如图.某沿海城市A接到台风警报.在该市正南方向150km的B处有一台风中心正以20km/h的速度向BC方向移动.已知城市A到BC的距离AD=90km.那么(1).台风中心经过多长时间从B点移到D点? (2).如果在距台风中心30km的圆形区域内都有受到台风破坏的危险.为让D点的游人脱离危险..游人必顺在接到台风警报后的几小时内撤离?最好选择什么方向? 22.如图.有一块塑料矩形模板ABCD.长为8cm.宽为4cm.将你手中足够大的直角三角板 PHF 的直角顶点P落在AD边上.在AD上适当移动三角板顶点P:能否使你的三角板两直角边分别通过点B与点C?若能.请你求出这时 AP 的长,若不能.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题10分)如图,      抛物线与x轴的一个交点是A,与y轴的交点是B,且OA、OB(OA<OB)的长是方程的两个实数根.

1.(1)求A、B两点的坐标;

2. (2) 求出此抛物线的的解析式及顶点D的坐标;

3.(3)求出此抛物线与x轴的另一个交点C的坐标;

4.(4)在直线BC上是否存在一点P,使四边形PDCO为梯形?若存在,求出P点坐标,若不存在,说明理由.

 

查看答案和解析>>

(11·湖州)(本小题10分)
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。

查看答案和解析>>

(本小题10分)

如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,

1.(1)求该抛物线的解析式;

2.(2)抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

 

查看答案和解析>>

(11·湖州)(本小题10分)

如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。

⑴求证:四边形AECF是平行四边形;

⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。

 

查看答案和解析>>

(本小题10分)如图11,已知二次函数y= -x2 +mx +4m的图象与x轴交于

A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2) - x1x2=10.

(1)求此二次函数的解析式.

(2)写出B,C两点的坐标及抛物线顶点M的坐标;

(3)连结BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.

 

查看答案和解析>>


同步练习册答案