已知:矩形ABCD. .P为矩形ABCD的边AD上一点.求证:. .当点P运动到矩形ABCD外时.结论是否仍然成立?请说明你的理由. .当点P运运到矩形ABCD内时.结论是否仍然成立呢?请说明你的理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)已知矩形的周长为,面积为.
(1)当时,求面积的最大值;
(2)当时,求周长的最小值.

查看答案和解析>>

(A类12分)如图1,矩形ABCD沿着BE折叠后,点C落在AD边上的点F处.如果∠ABF=50°,求∠CBE的度数.
(B类13分)如图2,在△ABC中,已知AC=8cm,AB=6cm,E是AC上的点,DE平分∠BEC,且DE⊥BC,垂足为D,求△ABE的周长.
(C类14分)如图3,在△ABC中,已知AD是∠BAC的平分线,DE、DF分别垂直于AB、AC,垂足分别为E、F,且D是BC的中点,你认为线段EB与FC相等吗?如果相等,请说明理由.

查看答案和解析>>

(11·孝感)(满分14分)如图(1),矩形ABCD的一边BC在直接坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(),其中.

(1)求点E、F的坐标(用含的式子表示);(5分)

(2)连接OA,若△OAF是等腰三角形,求的值;(4分)

(3)如图(2),设抛物线经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求的值.(5分)

 

查看答案和解析>>

(11·台州)(14分)已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为
点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直
线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式.
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形.
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由.

查看答案和解析>>

(11·台州)(14分)已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为
点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直
线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式.
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形.
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由.

查看答案和解析>>


同步练习册答案