30.C(点拨:利用三角形两边之和大于第三边.两边之差小于第三边.) 查看更多

 

题目列表(包括答案和解析)

19、《天天伴我学数学》一道作业题.如图1:请你想办法求出五角星中∠A+∠B+∠C+∠D+∠E的值.由于刚涉及到几何证明,很多学生不知道如何求出其结果.下面是习题讲解时,老师和学生对话的情景:老师向学生抛出问题:①观察图象,各个角的度数能分别求出他们的度数吗,能的话怎么求,不能的话怎么办?学生通过观察回答:很明显每个角都不规则,求不出各个角的度数.有个学生小声的说了句:要是能把这五个角放到一块就好了?老师回答:有想法,就去试试看.很快就有学生发现利用三角形外角性质将∠C和∠E;∠B和∠D分别用外角∠1和∠2表示.于是得到∠A+∠B+∠C+∠D+∠E=∠A+∠1+∠2=180°.根据以上信息,亲爱的同学们,你能求出图2中∠A+∠B+∠C+∠D+∠E+∠F+∠G的值吗?请给予证明.

查看答案和解析>>

不是利用三角形稳定性的是(  )

查看答案和解析>>

如图1,D是△ABC的边BC上一点,AH⊥BC于H,S△ABD=
1
2
BD•AH,S△ADC=
1
2
DC•AH,则
S△ABD
S△ACD
=
BD
DC
,因此,利用三角形的面积比可以来表示两条线段的比,甚至用三角形面积的比来证明与线段比有关的命题.

请解决下列问题:
已知:如图2,直线l与△ABC的边AB、AC交于D、F,与BC的延长线交于E,连接BF、AE.
(1)求证:
AD
DB
=
S△AEF
S△BEF

(2)求证:
AD
DB
BE
EC
CF
FA
=1.

查看答案和解析>>

15、不是利用三角形稳定性的是(  )

查看答案和解析>>

35、请阅读如下材料.如图,已知正方形ABCD的对角线ACBD于点O,E是AC上一点,AG⊥BE,垂足为G.求证:OE=OF.

(1)根据你的理解,上述证明思路的核心是利用
三角形全等
使问题得以解决,而证明过程中的关键是证出
∠1=∠2

(2)若上述命题改为:点E在AC的延长线上,AG⊥BE交EB的延长线于点G,延长AG交DB的延长线于点F,如图,其他条件不变.求证:OF=OE.

查看答案和解析>>


同步练习册答案