42.OM⊥ON.OM=ON.先说明△DCM≌△CBN得CM=BN.再推出△OCM≌△OBN得OM=ON. 查看更多

 

题目列表(包括答案和解析)

已知点O在直线AB上一点,将一直角三角板如图1放置,一直角边ON在直线AB上,另一直角边OM⊥AB于O,射线OC在∠AOM内部.

(1)如图2,将三角板绕着O点顺时针旋转,当∠AON=∠CON时,试判断OM是否平分∠BOC,并说明理由;
(2)若∠AOC=80゜时,三角板OMN绕O点顺时针旋转一周,每秒旋转5゜,多少秒后∠MOC=∠MOB?
(3)在(2)的条件下,如图3,旋转三角板使ON在∠BOC内部,另一边OM在直线AB的另一侧,下面两个结论:①∠NOC-∠BOM的值不变;②∠NOC+∠BOM的值不变.选择其中一个正确的结论说明理由.

查看答案和解析>>

问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由
探究展示:小宇同学展示出如下正确的解法:
解:OM=ON,
证明如下:连接CO,则CO是AB边上中线,
∵CA=CB,
∴CO是∠ACB的角平分线(依据1)
∵OM⊥AC,ON⊥BC,
∴OM=ON(依据2)反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:                                                                                    
依据2:                                                                                     
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>

已知点O在直线AB上一点,将一直角三角板如图1放置,一直角边ON在直线AB上,另一直角边OM⊥AB于O,射线OC在∠AOM内部.
作业宝
(1)如图2,将三角板绕着O点顺时针旋转,当∠AON=∠CON时,试判断OM是否平分∠BOC,并说明理由;
(2)若∠AOC=80゜时,三角板OMN绕O点顺时针旋转一周,每秒旋转5゜,多少秒后∠MOC=∠MOB?
(3)在(2)的条件下,如图3,旋转三角板使ON在∠BOC内部,另一边OM在直线AB的另一侧,下面两个结论:①∠NOC-∠BOM的值不变;②∠NOC+∠BOM的值不变.选择其中一个正确的结论说明理由.

查看答案和解析>>

29、如图,正方形OEFG绕着正方形ABCD的对角线的交点O旋转,边OE、OG分别交边AD、AB于点M、N.
(1)求证:OM=ON;
(2)设正方形OEFG的对角线OF与边AB相交于点P,连接PM.若正方形ABCD的边长为12,且PM=5,试求AM的长.

查看答案和解析>>

精英家教网如图,0M⊥NP,ON⊥NP,所以ON与OM重合,理由是(  )
A、两点确定一条直线B、经过一点有且只有一条直线与已知直线垂直C、过一点只能作一直线D、垂线段最短

查看答案和解析>>


同步练习册答案