题目列表(包括答案和解析)
已知:抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.
(1)用配方法求顶点C的坐标(用含m的代数式表示);
(2)“若AB的长为2
,求抛物线的解析式.”解法的部分步骤如下,补全解题过程,并简述步骤①的解题依据,步骤②的解题方法.
解:由(1)知,对称轴与x轴交于点D( ,0).
∵抛物线的对称性及AB=2
,
∴AD=BD=|xA-xD|=
.
∵点A(xA,0)在抛物线y=(x-h)2+k上,
∴0=(xA-h)2+k. ①
∵h=xC=xD,将|xA-xD|=
代入上式,得到关于m的方程
0=(
)2+( ) ②
(3)将(2)中的条件“AB的长为2
”改为“△ABC为等边三角形”,用类似的方法求出此抛物线的解析式.
已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.
(1)用配方法求顶点C的坐标(用含有m的代数式表示);
(2)“若AB的长为2
,求抛物线的解析式”的解法如下:
由(1)知,对称轴与x轴交于点D(________,0).
∵抛物线具有对称性,且AB=2
,
∴AD=DB=|xA-xD|=
.
∵A(xA,0)在抛物线y=(x-h)2+k上,
∴(xA-h)2+k=0. ①
∵h=xC=xD,
∴将|xA-xD|=
代入①,得到关于m的方程0=(
)2+(________). ②
补全解题过程,并简述步骤①的解题依据,步骤②的解题方法.
(3)将(2)中条件“AB的长为2
”改为“△ABC为等边三角形”,用类似的方法求出抛物线的解析式.
第一象限内的点A在一反比例函数的图象上,过A作
轴,垂足为B,连AO,已知
的面积为4。
(1)求反比例函数的解析式;
(2)若点A的纵坐标为4,过点A的直线与x轴交于P,且
与
相似,求所有符合条件的点P的坐标。
(3)在(2)的条件下,过点P、O、A的抛物线是否可由抛物线
平移得到?若是,请说明由抛物线
如何平移得到;若不是,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com