45.解:过点B作BC⊥AC.垂足为C.观察答图18-1可知AC=8-3+1=6.BC=2+5=7. 在Rt△ACB中.AB=km. 答:登陆点到宝藏埋藏点的直线距离是km. 点拨:所求距离实际上就是AB的长.解此类题目的关键是构造直角三角形.利用勾股定理直接求解. 查看更多

 

题目列表(包括答案和解析)

如图,已知:∠ABC=50°,∠ACB=60°,BO、CO分别是∠ABC和∠ACB的平分线.求∠BOC.
解:过点0作EF∥BC,交AB于点E,交AC于点F.
因为BO平分∠ABC
已知
已知

所以∠1=
12
∠ABC
角平分线的定义
角平分线的定义

因为∠ABC=50°
已知
已知

所以∠1=25°
等量代换
等量代换

同理∠2=30°
因为EF∥BC(由作图可知)
所以∠1=∠3
两直线平行,内错角相等
两直线平行,内错角相等

所以∠3=25°
等量代换
等量代换

同理∠4=30°
所以∠BOC=180°-25°-30°=125°.

查看答案和解析>>

如图,一次函数y=k1x+b与反比例函数y=
k2
x
的图象交于A(2,m),B(n,-2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式k1x+b>
k2
x
的解集;
(3)若P(p,y1),Q(-2,y2)是函数y=
k2
x
图象上的两点,且y1≥y2,求实数p的取值范围.

查看答案和解析>>

(1)如图,在△ABC中,AB=AC,D是底边BC上的一点,过点D作BC的垂线,交AB于点E,交AC的延长线于F,则△AEF是等腰三角形.请在解答过程中的括号里填写理由.
解:作AH⊥BC于H
∵AB=AC(已知)
∴∠1=∠2
(等腰三角形三线合一)
(等腰三角形三线合一)

∵DF⊥BC(已知)
∴AH∥DF(平面内垂直于同一条直线的两直线平行)
∴∠1=∠F
(两直线平行,同位角相等)
(两直线平行,同位角相等)

∠2=∠3
(两直线平行,内错角相等)
(两直线平行,内错角相等)

∴∠F=∠3(等量代换)
∴AE=AF
(等角对等边)
(等角对等边)

∴△AEF是等腰三角形.
(2)如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=36°,求∠D的度数.

查看答案和解析>>

阅读与证明:在一个三角形中,如果有两个角相等,那么这两个角所对的边也相等.如图①,在△ABC中,如果∠B=∠C,那么AB=AC,这一结论可以说明如下:
解:过点A作AD⊥BC于D,则∠ADB=∠ADC=90°,在△ABD和△ACD中
∠B=∠C,∠ADB=∠ADC,AD=AD
∴△ABD≌△ACD
∴AB=AC
请你仿照上述方法在图②中再选一种方法说明以上结论.
操作:如图③,点O为线段MN的中点,直线PQ与MN相交于点O,过点M、N作一组平行线分别与PQ交于点M′、N′,则线段MM′一定等腰NN′.想一想,为什么?
根据上述阅读与证明的结论以及操作得到的经验完成下列探究活动.探究:如图④,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的等量关系,并说明你的结论.

查看答案和解析>>

29、如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.
解:过点A作AH⊥BC,垂足为H.
∵在△ADE中,AD=AE(已知)
AH⊥BC(所作)
∴DH=EH(等腰三角形底边上的高也是底边上的中线)
又∵BD=CE(已知)
∴BD+DH=CE+EH(等式的性质)
即:BH=
CH

又∵
AH⊥BC
(所作)
∴AH为线段
BC
的垂直平分线
∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)
∠B=∠C
(等边对等角)

查看答案和解析>>


同步练习册答案