5.已知 求ab+cd的值. 为任意正数.证明1<s<2. 查看更多

 

题目列表(包括答案和解析)

阅读理解:
对于任意正实数a,b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b≥0,∴a+b≥2
ab
,只有点a=b时,等号成立.
结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值p,则a+b≥2
p
,只有当a=b时,a+b有最小值2
p

根据上述内容,回答下列问题:
(1)若m>0,只有当m=
 
时,m+
1
m
有最小值
 

(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥2
ab
,并指出等号成立时的条件;
②探索应用:如图2,已知A(-3,0),B(0,-4)P为双曲线y=
12
x
(x>0)
上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
精英家教网

查看答案和解析>>

阅读理解:对于任意正实数a、b,∵≥0, ∴≥0,
,只有当a=b时,等号成立.
结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值
根据上述内容,回答下列问题:
若m>0,只有当m=    时,    
思考验证:如图1,AB为半圆O的直径,C为半圆上任意一点(与点A、B不重合),过点C作CD⊥AB,垂足为D,AD=a,DB=b.

试根据图形验证,并指出等号成立时的条件.
探索应用:如图2,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.

查看答案和解析>>

阅读理解:对于任意正实数a、b,∵≥0, ∴≥0,

,只有当a=b时,等号成立.

结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值

根据上述内容,回答下列问题:

若m>0,只有当m=     时,    

思考验证:如图1,AB为半圆O的直径,C为半圆上任意一点(与点A、B不重合),过点C作CD⊥AB,垂足为D,AD=a,DB=b.

试根据图形验证,并指出等号成立时的条件.

探索应用:如图2,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.

 

查看答案和解析>>

阅读理解:
对于任意正实数a,b,∵数学公式≥0,∴a-数学公式+b≥0,∴a+b≥2数学公式,只有点a=b时,等号成立.
结论:在a+b≥2数学公式(a,b均为正实数)中,若ab为定值p,则a+b≥数学公式,只有当a=b时,a+b有最小值2数学公式
根据上述内容,回答下列问题:
(1)若m>0,只有当m=时,m+数学公式有最小值;
(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥数学公式,并指出等号成立时的条件;
②探索应用:如图2,已知A(-3,0),B(0,-4)P为双曲线数学公式上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.

查看答案和解析>>

阅读理解: 对于任意正实数a,b,∵≥0,∴a﹣+b≥0,∴a+b≥2,只有点a=b时,等号成立.
结论:在a+b≥2(a,b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值2.根据上述内容,回答下列问题:
(1)若m>0,只有当m=(    ),m+有最小值(    );
(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥,并指出等号成立时的条件;
②探索应用:如图2,已知A(﹣3,0),B(0,﹣4)P为双曲线上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.

查看答案和解析>>


同步练习册答案