2.结合反比例函数的图象.揭示与其对应的函数关系式之间的内在联系及其几何意义. [基础与巩固] 查看更多

 

题目列表(包括答案和解析)

如图,一次函数的图象与反比例函数的图象交于A,B两点,与x轴交于点C,过A作AD⊥x轴于D,若OA=
5
,AD=
1
2
OD,点B的横坐标为
1
2

(1)求一次函数的解析式及△AOB的面积.
(2)已知反比例函数y1和一次函数y2,结合图象直接写出:当y1>y2时,x的取值范围.
(3)在坐标轴上是否存在点P使△OAP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

已知一次函数与反比例函数的图象交于点P(-3,M),Q(2,-3).
(1)求这两个函数的关系式;
(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;
(3)结合图象,直接写出当x为何值时,一次函数的值大于反比例函数的值?

查看答案和解析>>

如图,直线y=k1x+b与反比例函数y=
k2
x
的图象交于A(1,6),B(a,3)两点.
(1)求k1、k2的值;
(2)结合图形,直接写出k1x+b-
k2
x
>0
时,x的取值范围;
(3)连接AO、BO,求△ABO的面积;
(4)如图2,梯形OBCE中,BC∥OE,过点C作CE⊥X轴于点E,CE和反比例函数的图象交于点P,当梯形OBCE的面积为9时,请判断PC和PE的大小关系,并说明理由.

查看答案和解析>>

15、(1)学习和研究《反比例函数的图象与性质》《一次函数的图象与性质》时,用到的数学思想方法有
数形结合
分类讨论、类比、从特殊到一般、化归、函数方程思想
.(填2个即可)
(2)学数学不仅仅是听课和解题,三年初中数学学习期间,教材中给你留下深刻印象的选学内容、数学活动、课题学习有
阅读与思考、观察与猜想、实验与探究、信息技术应用
数学活动
课题学习
(填3个即可).

查看答案和解析>>

精英家教网如图,正比例函数y1=k1x与反比例函数y2=
k2
x
 相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且S△BDO=4.过点A的一次函数y3=k3x+b与反比例函数的图象交于另一点C,与x轴交于点E(5,0).
(1)求正比例函数y1、反比例函数y2和一次函数y3的解析式;
(2)结合图象,求出当k3x+b>
k2
x
>k1x时x的取值范围.

查看答案和解析>>


同步练习册答案