解:(1)由题意设:y-3=kx.则将x=2.y=7代入得7-3=2k.所以k=2..故y与x的函数关系式是y=2x+3.(2)当x=0时.y=3,当y=0时.x= -.故它与坐标轴的交点坐标是(0.3).(-.0) 查看更多

 

题目列表(包括答案和解析)

元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?
解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组
 

查看答案和解析>>

(2011•资阳)某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.
(1)需租用48座客车多少辆?
解:设需租用48座客车x辆.则需租用64座客车
(x-1)
(x-1)
辆.当租用64座客车时,未坐满的那辆车还有
(16x-64)
(16x-64)
个空位(用含x的代数式表示).由题意,可得不等式组:
16x-64>0
16x-64<32.
16x-64>0
16x-64<32.
解这个不等式组,得:_
4<x<6
4<x<6

因此,需租用48座客车
5
5
辆.
(2)若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?

查看答案和解析>>

22、已知关于x的一元二次方程x2-mx+2m-1=0的两个实数根的平方和为23,求m的值.
某同学的解答如下:
解:设x1、x2是方程的两根,
由根与系数的关系,得x1+x2=-m,x1x2=2m-1;
由题意,得x12+x22=23;
又x12+x22=(x1+x22-2x1x2
∴m2-2(2m-1)=23.
解之,得m1=7,m2=-3,
所以,m的值为7或-3.
上述解答中有错误,请你指出错误之处,并重新给出完整的解答.

查看答案和解析>>

94、小红和小兵一起做一道题:依据下面条件求等腰三角形的三个内角的度数.(1)一个角为另一个角的2倍;(2)两角之差为30度.
小兵做出了以下解答过程:
(1)设等腰三角形的顶角为x°,则底角为2x,由题意得x+2x+2x=180°,解得x=36,所以2x=72,所以这个等腰三角形的三个内角为36°,72°,72度.
小红做出了以下解答过程:
(2)设等腰三角形的顶角为x°,则底角为(x+30°),由题意得x+2(x+30)=180,解得x=40,所以x+30=70,所以这个等腰三角形的三个内角度数为40°,70°,70度.
小红看了解答以后说:“小兵你错了”.
亲爱的同学,你说他们的答案到底谁错了?错在哪里呢?

查看答案和解析>>

某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元,以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元,要使每盆的盈利达到10元,每盆应该植多少株?
小明的解法如下:
解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为(3-0.5x)元,
由题意得(x+3)(3-0.5x)=10,
化简,整理得:x2-3x+2=0
解这个方程,得:x1=1,x2=2,
答:要使每盆的盈利达到10元,每盆应该植入4株或5株.
(1)本题涉及的主要数量有每盆花苗株数,平均单株盈利,每盆花苗的盈利等,请写出两个不同的等量关系:
 

(2)请用一种与小明不相同的方法求解上述问题.

查看答案和解析>>


同步练习册答案