证明:(1)∵四边形ABCD是正方形.∴BC=DC.∠BCD=90° 在Rt△BCE和Rt△DCF中.BC=DC.CE=CF,∴Rt△BCE≌Rt△DCF (2)∵CE=CF.∴∠CEF=∠CFE,∴∠CFE==45° ∵Rt△BCE≌Rt△DCF,∴∠CFD=∠BEC=60° ∴∠EFD=∠DFC-∠EFC=15° 查看更多

 

题目列表(包括答案和解析)

如图1,两个不全等的四边形ABCD、四边形CGFE是正方形,连接BG,DE.交DC于H,交CG于K
(1)观察图形,①猜想BG与DE之间长度关系;②猜想BG与DE所在直线的位置关系,并证明你的猜想.
直接回答:连接四边形DBEG四边中点所得四边形是________形
(2)如图2,将原题中正方形改为菱形,且∠BCD=∠ECG,则(1)中的①、②的结论是否成立?若成立,请证明;若不成立,请说明理由.
直接回答:连接四边形DBEG四边中点所得四边形是________形
(3)如图3,将原题中正方形改为矩形,且BC=mCG、CD=mCE,则(1)中的①、②结论是否成立?不要证明;
直接回答:连接四边形DBEG四边中点所得四边形是________形.

查看答案和解析>>

27、如图1,两个不全等的四边形ABCD、四边形CGFE是正方形,连接BG,DE.交DC于H,交CG于K
(1)观察图形,①猜想BG与DE之间长度关系;②猜想BG与DE所在直线的位置关系,并证明你的猜想.
直接回答:连接四边形DBEG四边中点所得四边形是
正方

(2)如图2,将原题中正方形改为菱形,且∠BCD=∠GCE=90°.则(1)中的①、②的结论是否成立?若成立,请证明;若不成立,请说明理由.
直接回答:连接四边形DBEG四边中点所得四边形是
正方


(3)如图3,将原题中正方形改为矩形,且BC=mCG、CD=mCE则(1)中的①、②结论是否成立?不要证明
直接回答:连接四边形DBEG四边中点所得四边形是
形.

查看答案和解析>>


同步练习册答案