C;2.D.提示:根据三角形中位线的性质定理:3.26或22.提示:当两腰上的中位线长为3时.则底边长为6.腰长为10.三角形的周长为26.当两腰上的中位线长为5时.则底边长为10.腰长为6.三角形的周长为22,4.平行四边形 ,5.平行四边形, 查看更多

 

题目列表(包括答案和解析)

如图1,在四边形中,分别是的中点,连结并延长,分别与的延长线交于点,则(不需证明).

(温馨提示:在图1中,连结,取的中点,连结,根据三角形中位线定理,证明,从而,再利用平行线性质,可证得.)

问题一:如图2,在四边形中,相交于点分别是的中点,连结,分别交于点,判断的形状,请直接写出结论.

问题二:如图3,在中,点在上,分别是的中点,连结并延长,与的延长线交于点,若,连结,判断的形状并证明.

 


查看答案和解析>>

如图1,在四边形中,分别是的中点,连结并延长,分别与的延长线交于点,则(不需证明).

(温馨提示:在图1中,连结,取的中点,连结,根据三角形中位线定理,证明,从而,再利用平行线性质,可证得.)

问题一:如图2,在四边形中,相交于点分别是的中点,连结,分别交于点,判断的形状,请直接写出结论.

问题二:如图3,在中,点在上,分别是的中点,连结并延长,与的延长线交于点,若,连结,判断的形状并证明.

查看答案和解析>>

    如图l,在四边形A8CD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).

    (温馨提示:在图1中,连结BD,取BD的中点H,连结HE、HF,根据三角形中位线定理,可证得HE=HF,从而∠HFE=∠HEF,再利用平行线的性质,可证得∠BME=∠CNE.)

    问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连结EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论.

    问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,与BA的延长线交于点G,  若∠EFC=600,连结GD,判断△AGD的形状并证明.

查看答案和解析>>

如图,在四边形A8CD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).

(温馨提示:在图中,连结BD,取BD的中点H,连结HE、HF,根据三角形中位线定理,可证得HE=HF,从而∠HFE=∠HEF,再利用平行线的性质,可证得∠BME=∠CNE.)

问题一:如图,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连结EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论.

问题二:如图,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,与BA的延长线交于点G,若∠EFC=600,连结GD,判断△AGD的形状并证明.

查看答案和解析>>

如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).

(温馨提示:在下图中,连结BD,取BD的中点H,连结HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)

问题一:如图,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连结EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论.

问题二:如图,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,与BA的延长线交于点G,若∠EFC=60°,连结GD,判断△AGD的形状并证明.

查看答案和解析>>


同步练习册答案