(1)证明:∵AC⊥BD.∴∠ACB=∠ACD=90°. 又∵AC=AC.BC=CD.∴△ACB≌△ACD(SAS). ∴AB=AD(全等三角形的对应边相等). ∴△ABD是等腰三角形. 可知AB=AD. ∴∠B=∠D.又∵AC=BC. ∴∠B=∠BAC. AC=CD.∴∠D=∠DAC. 在△ABD中.∠B+∠D+∠BAC+∠DAC=180°. ∴2=180°. ∴∠BAC+∠DAC=90°. 即∠BAD=90°. 查看更多

 

题目列表(包括答案和解析)

阅读材料:如图在四边形ABCD中,对角线AC⊥BD,垂足为P.
求证:S四边形ABCD=
1
2
AC•BD.
证明:AC⊥BD?
S△ACD=
1
2
AC•PD
S△ABC=
1
2
AC•BP

∴S四边形ABCD=S△ACD+S△ACB=
1
2
AC•PD+
1
2
AC•BP
=
1
2
AC(PD+PB)=
1
2
AC•B D
解答问题:
(1)上述证明得到的性质可叙述为
 

(2)已知:如图,等腰梯形ABCD中,AD∥BC,对角线AC⊥BD且相交于点P,AD=3cm,BC=7cm,利用上述的性质求梯形的面积.
精英家教网精英家教网

查看答案和解析>>

四边形ABCD的对角线AC、BD的长分别为m、n,可以证明当AC⊥BD时(如左图),四边形ABCD的面积S=
12
mn,那么当AC、BD所夹的锐角为θ时(如图),四边形ABCD的面积S=
 
.(用含m、n、θ的式子表示)精英家教网

查看答案和解析>>

如图所示,同心圆中,大圆的弦AB交小圆于C,D两点,试证明:AC=BD.

查看答案和解析>>

精英家教网在括号内加注理由.
(1)已知:如图,AC⊥BC,垂足为C,∠BCD是∠B的余角.
求证:∠ACD=∠B.
证明:∵AC⊥BC(已知)
∴∠ACB=90°
 

∴∠BCD是∠ACD的余角
∵∠BCD是∠B的余角(已知)
∴∠ACD=∠B
 

(2)如图,直线AB∥CD,EF分别交AB、CD于点M、G,MN平分∠EMB,GH平分∠MGD,精英家教网
求证:MN∥GH.
证明:∵AB∥CD(已知)
∴∠EMB=∠EGD
 

∵MN平分∠EMB,GH平分∠MGD(已知)
∴∠1=
1
2
∠EMB,∠2=
1
2
∠MGD
 

∴∠1=∠2
∴MN∥GH
 

查看答案和解析>>

阅读材料:
如图(1),在四边形ABCD中,对角线AC⊥BD,垂足为点P.求证:S四边形ABCD=
1
2
AC•BD;
证明:∵AC⊥BD,
S△ACD=
1
2
AC•PD
S△ABC=
1
2
AC•BP

∴S四边形ABCD=S△ACD+S△ACB=
1
2
AC•PD+
1
2
AC•BP
=
1
2
AC(PD+PB)=
1
2
AC•BD
解答问题:
(1)上述证明得到的性质可叙述为
 

(2)已知:如图(2),在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,且相交于点P,AD=3cm,BC=7cm,利用上述性质求梯形的面积.
(3)如图(3),用一块面积为800cm2的等腰梯形彩纸做风筝,并用两根竹条作梯形的对角线固定风筝,对角线恰好互相垂直,问竹条的长是多少?
精英家教网

查看答案和解析>>


同步练习册答案