中心对称图形上的每一对对应点所连成的线段都经过 .并被 平分. 查看更多

 

题目列表(包括答案和解析)

中心对称图形上的每一对对应点所连成的线段都经过(    ),并被(    )平分。

查看答案和解析>>

(1)在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相________,那么这个图形叫做中心对称图形,这个点叫做它的________

(2)中心对称图形上的每一对对应点所连成的线段都被________平分.

查看答案和解析>>

下列说法不正确的是


  1. A.
    图形平移后,对应点所连结的线段可能在同一条直线上
  2. B.
    图形旋转后,每对对应点与旋转中心的连线所成的角相等
  3. C.
    中心对称图形和中心对称是一回事
  4. D.
    轴对称、平移与旋转都不改变图形的形状和大小

查看答案和解析>>

如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一

个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做

位似中心。利用三角形的位似可以将一个三角形缩小或放大。

1)选择:如图(1),点O是等边△PQR的中心,P’Q’R’分别是OPOQOR

中点,则△P’Q’R’与是△PQR是位似三角形,此时,△P’Q’R’与△PQR的位似比,位

似中心分别为                              

A. 2,点P      B. ,点P       C. 2,点O      D. ,点O

2)如图(2),用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应的

问题。画法:①在△AOB内画等边三角形CDE,使点COA上,点DOB上;②

连结OE并延长,交AB于点E’,过点E’E’C’//EC,交OA于点C’,作E’D’//ED

OB于点D’;③连结C’D’,则△C’D’E’是△AOB的内接三角形。

求证:△CDE是等边三角形。

 

查看答案和解析>>

如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.

(1)选择:如图,点O是等边三角形PQR的中心,分别是OP、OQ、OR的中点,则△与△PQR是位似三角形.此时,△与△PQR的位似比、位似中心分别为

[  ]

A.2、点P
B.、点P
C.2、点O
D.、点O

(2)如图,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题.

画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;

②连结OE并延长,交AB于点,过点∥EC,交OA于点,作∥ED,交OB于点

③连结.则△是△AOB的内接三角形.

求证:△是等边三角形.

查看答案和解析>>


同步练习册答案