27.如图22.BP.CP是△ABC的外角平分线.则点P必在∠BAC的平分线上.你能说出其中的道理吗? 查看更多

 

题目列表(包括答案和解析)

(2012•延庆县二模)阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).
请你回答:AP的最大值是
6
6

参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是
2
2
+2
6
(或不化简为
32+16
3
2
2
+2
6
(或不化简为
32+16
3
.(结果可以不化简)

查看答案和解析>>

(2012•房山区一模)如图1,在△ABC中,∠ACB=90°,AC=BC=
5
,以点B为圆心,以
2
为半径作圆.
(1)设点P为⊙B上的一个动点,线段CP绕着点C顺时针旋转90°,得到线段CD,连接DA,DB,PB,如图2.求证:AD=BP;
(2)在(1)的条件下,若∠CPB=135°,则BD=
2
2
或2
2
2
或2

(3)在(1)的条件下,当∠PBC=
135
135
° 时,BD有最大值,且最大值为
10
+
2
10
+
2
;当∠PBC=
45
45
° 时,BD有最小值,且最小值为
10
-
2
10
-
2

查看答案和解析>>

已知:如图,⊙O与⊙P相交于A、B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P于D、E,过点精英家教网E作EF⊥CE交CB的延长线于F.
(1)求证:BC是⊙P的切线;
(2)若CD=2,CB=2
2
,求EF的长;
(3)求以BP、EF为根的一元二次方程.

查看答案和解析>>


同步练习册答案