7 相似三角形的应用(1)同步练习 [目标与方法] 查看更多

 

题目列表(包括答案和解析)

4、有人说“学习相似三角形的判定要类比三角形全等的判定,这样便于理解它们之间的联系与区别,易于记忆,方便应用.”你认为如何?能试着总结这个问题吗?请你填一填:
全等三角形的判定方法有:
ASA
AAS
SAS
SSS
,直角三角形除此之外再加
HL

相似三角形的判定除了可以运用相似三角形的定义外,我们还学习了一种简单的方法:
两角
对应相等的两个三角形相似.

查看答案和解析>>

有人说“学习相似三角形的判定要类比三角形全等的判定,这样便于理解它们之间的联系与区别,易于记忆,方便应用.”你认为如何?能试着总结这个问题吗?请你填一填:
全等三角形的判定方法有:                ,直角三角形除此之外再加   
相似三角形的判定除了可以运用相似三角形的定义外,我们还学习了一种简单的方法:    对应相等的两个三角形相似.

查看答案和解析>>

有人说“学习相似三角形的判定要类比三角形全等的判定,这样便于理解它们之间的联系与区别,易于记忆,方便应用.”你认为如何?能试着总结这个问题吗?请你填一填:
全等三角形的判定方法有:______,______,______,______,直角三角形除此之外再加______.
相似三角形的判定除了可以运用相似三角形的定义外,我们还学习了一种简单的方法:______对应相等的两个三角形相似.

查看答案和解析>>

有人说“学习相似三角形的判定要类比三角形全等的判定,这样便于理解它们之间的联系与区别,易于记忆,方便应用.”你认为如何?能试着总结这个问题吗?请你填一填:
全等三角形的判定方法有:________,________,________,________,直角三角形除此之外再加________.
相似三角形的判定除了可以运用相似三角形的定义外,我们还学习了一种简单的方法:________对应相等的两个三角形相似.

查看答案和解析>>

理解与应用
小明在学习相似三角形时,在北京市义务教育课程改革实验教材第17册书,第37页遇到这样一道题:
如图1,在△ABC中,P是边AB上的一点,联结CP.要使△ACP∽△ABC,还需要补充的一个条件是
 
,或
 

请回答:
(1)小明补充的条件是
 
,或
 

(2)请你参考上面的图形和结论,探究、解答下面的问题:如图2,在△ABC中,∠A=60°,AC2=AB2+AB•BC.求∠B的度数.
精英家教网

查看答案和解析>>


同步练习册答案