2.能利用概率知识解决实际生活中的一些简单问题. [基础与巩固] 查看更多

 

题目列表(包括答案和解析)

阅读材料:∵ax2+bx=c=0(a≠0)有两根为x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
,x1x2=
c
a

利用此知识解决:是否存在实数m,使关于x的方程x2+(m+1)x+m+4=0的两根平方和等于2?若存在,求出满足条件的m的值;若不存在,说明理由.

查看答案和解析>>

如果一元二次方程ax2+bx+c=0(a≠0)的两根是x1、x2,那么利用公式法写出两个根x1、x2,通过计算可以得出:x1+x2=-
b
a
,x1x2=
c
a
.由此可见,一元二次方程两个根的和与积是由方程的系数决定的.这就是一元二次方程根与系数的关系.请利用上述知识解决下列问题:
(1)若方程2x2-4x-1=0的两根是x1、x2,则x1+x2=
2
2
,x1x2=
-
1
2
-
1
2

(2)已知方程x2-4x+c=0的一个根是2+
3
,请求出该方程的另一个根和c的值.

查看答案和解析>>

设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

利用此知识解决:是否存在实数m,使关于x的方程x2+(m+1)x+m+4=0的两根平方和等于2?若存在,求出满足条件的m的值;若不存在,说明理由.

查看答案和解析>>

阅读材料:∵ax2+bx+c=0(a≠0)有两根为x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a
.∴x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a
.综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a
.利用此知识解决:已知x1,x2是方程x2-x-1=0的两根,不解方程求下列式子的值:
①x12+x22;                 
②(x1+1)(x2+1).

查看答案和解析>>

阅读材料:∵ax2+bx+c=0(a≠0)有两根为x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a
.∴x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a
.综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a
.利用此知识解决:
(1)已知x1,x2是方程x2-x-1=0的两根,不解方程求下列式子的值:①x12+x22;②(x1+1)(x2+1);
(2)是否存在实数m,使关于x的方程x2+(m+1)x+m+4=0的两根平方和等于2?若存在,求出满足条件的m的值;若不存在,说明理由.

查看答案和解析>>


同步练习册答案