解析:如图.卡车能否通过.关键是车高4米与AC的比较.BC为2.6米.只需求AB.在直角三角形OAB中.半径OA为2米.车宽的一半为DC = OB =1.4米.运用勾股定理求出AB即可. 答案:过直径的中点O.作直径的垂线交下底边于点D. 如图所示.在Rt△ABO中.由题意知OA=2.DC = OB =1.4. 所以. 因为4-2.6=1.4,.2.04>1.96,所以卡车可以通过. 答:卡车可以通过.但要小心. 查看更多

 

题目列表(包括答案和解析)

如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,精英家教网线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?

查看答案和解析>>

如图,隧道的横截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的解析式为y=-
14
x2+4

(1)一辆货运车车高4m,宽2m,它能通过该隧道吗?
(2)如果该隧道内设双行道,中间遇车间隙为0.4m,那么这辆卡车是否可以通过?

查看答案和解析>>

如图,某隧道的截面由抛物线AED和矩形ABCD构成,整个图形是轴对称图形.矩形的长BC为8m,宽AB为2m,抛物线的顶点E到地面距离为6m.
(1)自建平面直角坐标系,并求抛物线的解析式;
(2)一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?

查看答案和解析>>

如图,隧道的截面由抛物线和矩形构成,矩形的长,宽,以所在的直线为轴,线段的中垂线为轴,建立平面直角坐标系,轴是抛物线的对称轴,顶点到坐标原点的距离为

(1)求抛物线的解析式;

(2)一辆货运卡车高,宽2.4m,它能通过该隧道吗?

(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设

有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?

 

 

查看答案和解析>>

如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?

查看答案和解析>>


同步练习册答案