边长分别为和的两个正方形按如图(I)的样式摆放. 则图中阴影部分的面积为 . 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

查看答案和解析>>

如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

查看答案和解析>>

如图所示,在平面直角坐标系中,矩形ABCO的两边OA、OC分别在x轴和y轴的正半轴上,OA=4,OC=2。点P从点O出发,沿x轴以每秒1个单位长度的速度向点A匀速运动,当点P到达点A时停止运动。设点P运动的时间是t秒,将线段CP的中点绕点P按顺时针方向旋转90°得到点D,点D随点P的运动而运动,连结DP,DA。
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大?最大面积为多少?
(3)当点P与点O重合时,CO的中点绕点P旋转后的对应点为D1,点P与点A重合时,CA中点绕P点旋转后的对应点为D2,求直线D1D2的解析式;
(4)求出随着点P的运动,点D运动路线的长度。

查看答案和解析>>

如图,已知在直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.

(1)求经过A、B、C三点的抛物线的解析式;

(2)当BE经过(1)中抛物线的顶点时,求CF的长;

(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

 

查看答案和解析>>

如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

查看答案和解析>>


同步练习册答案