在代数式3+2中.使式子有意义的X的取值范围是( ): A.x>2, B.x<2, C.x≠2, D.x=2, 查看更多

 

题目列表(包括答案和解析)

如图1,在Rt△AOB中,∠AOB=90°,AO=4
3
,∠ABO=30°.动点P在线段AB上从点A向终点B以每秒
3
个单位的速度运动,设运动时间为t秒.在直线OB 上取两点M、N作等边△PMN.
(1)求当等边△PMN的顶点M运动到与点O重合时t的值.
(2)求等边△PMN的边长(用t的代数式表示);
(3)如果取OB的中点D,以OD为边在Rt△AOB 内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
(4)在(3)中,设PN与EC的交点为R,是否存在点R,使△ODR是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连接AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.过点B作x轴的垂线交直线AC于点D.设点B坐标是(t,0).
(1)当t=4时,求直线AB的解析式;
(2)当t>0时,用含t的代数式表示点C的坐标及△ABC的面积;
(3)是否存在点B,使△ABD为等腰三角形?若存在,请求出所有符合条件的点B的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=CD=4,BC=3.点M从点D出发以每秒2个单位长度的速度向点A运动.同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P.连接AC交NP于点Q,连接MQ.设运动时间为t秒.
(1)填空:AM=
4-2t
4-2t
;AP=
1+t
1+t
.(用含t的代数式表示)
(2)t取何值时,梯形ABNM面积等于梯形ABCD面积的
13

(3)如图2,将△AQM沿AD翻折,得△AKM,请问是否存在某时刻t,使四边形AQMK为正方形?说明理由.

查看答案和解析>>

(2013•贵阳模拟)如图,在平面直角坐标系中,△ABCS三个顶点的坐标分别为A(-6,0),B(6,0),C(0,m)(其中m>0),延长AC到点D,使CD=
1
2
AC,过点D作DE∥AB交BC的延长线于点E.
(1)D点的坐标是
(3,
3
2
m)
(3,
3
2
m)
(用含m的代数式表示)
(2)当△ABC为等腰三角形时,作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的表达式;
(3)在△ABC为等腰三角形的条件下,点P为y轴上任一点,连接BP、DP,当BP+DP的值最小时,点P的坐标为
(0,m)
(0,m)

查看答案和解析>>

如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,点D、E从点C同时出发,分别以1cm/s和2cm/s的速度沿着射线CB向右移动,以DE为一边在直线BC的上方作等边△DEF,连接CF,设点D、E运动的时间为t秒.
(1)△DEF的边长为
 
(用含有t的代数式表示),当t=
 
秒时,点F落在AB上;
(2)t为何值时,以点A为圆心,AF为半径的圆与△CDF的边所在的直线相切?
(3)设点F关于直线AB的对称点为G,在△DEF运动过程中,是否存在某一时刻t,使得以A、C、E、G为顶点的四边形为梯形?若存在,请直接写出t的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>


同步练习册答案