如图.直线.垂足为O.点A1与点A关于直线对称.点A2与点A关于直线对称.点A1与A2有怎样的对称关系?你能说明理由吗? 点拨:判别对称性一定要根据定义进行.本题易漏掉A1 .A2 关于A1A2的垂直平分线对称这一关系. 查看更多

 

题目列表(包括答案和解析)

如图,直线l1l2,垂足为O,点A1与点A关于直线l1对称,点A2与点A关于直线l2对称,点A1与A2有怎样的对称关系?你能说明理由吗?

查看答案和解析>>

请阅读下面知识:
梯形中位线的定义:梯形两腰中点的连线,叫做梯形的中位线.如图,E,F是梯形ABCD两腰AB,CD的中点,则EF是梯形的中位线梯形中位线与两底长度的关系:梯形中位线长度等于两底长的和的一半如图:EF=(AD+BC)利用上面的知识,完成下面题目的解答已知:直线l与抛物线M交于点A,B两点,抛物线M的对称轴为y轴,过点A,B作x轴的垂线段,垂足分别为D,C,已知A(-1,3),B(
(1)求梯形ABCD中位线的长度;
(2)求抛物线M的解析式;
(3)把抛物线M向下平移k个单位,得抛物线M1(抛物线M1的顶点保持在x轴的上方),与直线l的交点为A1,B1,同样作x轴的垂线段,垂足为D1,C1,问此时梯形A1B1C1D1的中位线的长度(设为h)与原来相比是否发生变化?若不变,说明理由.若有改变,求出h与k的函数关系式.

查看答案和解析>>

如图1,在正方形ABCD中,对角线AC与BD相交于点O,AF平分∠BAC,交BD于点F.
(1)求证:DF=AD;
(2)过点F作FH⊥AB,垂足为点H,求证:FH+
1
2
AC=AD;
(3)如图2,将∠ADC绕顶点D旋转一定的角度后,DC边所在的直线与BC边交于点C1(不与点B重合),DA边所在的直线与BA边的延长线交于点A1. A1F1平分∠BA1C1,交BD于点F1,过点F1作F1H1⊥AB,垂足为H1,试猜想F1H1
1
2
A1C1与AD三者之间的数量关系,并证明你的猜想.
精英家教网

查看答案和解析>>

如图1,在正方形ABCD中,对角线AC与BD相交于点O,AF平分∠BAC,交BD于点F.
(1)求证:DF=AD;
(2)过点F作FH⊥AB,垂足为点H,求证:FH+数学公式AC=AD;
(3)如图2,将∠ADC绕顶点D旋转一定的角度后,DC边所在的直线与BC边交于点C1(不与点B重合),DA边所在的直线与BA边的延长线交于点A1. A1F1平分∠BA1C1,交BD于点F1,过点F1作F1H1⊥AB,垂足为H1,试猜想F1H1数学公式A1C1与AD三者之间的数量关系,并证明你的猜想.
作业宝

查看答案和解析>>

如图1,在正方形ABCD中,对角线AC与BD相交于点O,AF平分∠BAC,交BD于点F.
(1)求证:DF=AD;
(2)过点F作FH⊥AB,垂足为点H,求证:FH+AC=AD;
(3)如图2,将∠ADC绕顶点D旋转一定的角度后,DC边所在的直线与BC边交于点C1(不与点B重合),DA边所在的直线与BA边的延长线交于点A1. A1F1平分∠BA1C1,交BD于点F1,过点F1作F1H1⊥AB,垂足为H1,试猜想F1H1A1C1与AD三者之间的数量关系,并证明你的猜想.

查看答案和解析>>


同步练习册答案