题目列表(包括答案和解析)
(本题满分10分)(1)探究新知:
①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.试判断△ABM与△ABN的面积是否相等。
②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.
![]()
![]()
(2)结论应用:
如图③,抛物线
的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线
上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由.
![]()
![]()
(本题满分10分)(1)探究新知:![]()
![]()
①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.试判断△ABM与△ABN的面积是否相等。
②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图③,抛物线
的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线
上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由.![]()
![]()
(本题满分10分)(1)探究新知:
①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.试判断△ABM与△ABN的面积是否相等。
②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.
![]()
![]()
(2)结论应用:
如图③,抛物线
的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线
上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由.
![]()
![]()
(本小题10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙
O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知A,
B两点的坐标分别为A(0,2
),B(-2,0).
(1)求C,D两点的坐标.
(2)求证:EF为⊙O1的切线.
(3)探究:如图13,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com