如下图.已知∠ABC=∠ADC=90°.E是AC上一点.AB=AD. 求证:EB=ED. 查看更多

 

题目列表(包括答案和解析)

如下图,已知∠ABC=∠ADC=90°,EAC上一点,AB=AD,求证:EB=ED.

查看答案和解析>>

如下图,已知ABC=ADC=90°EAC上一点,AB=AD,求证:EB=ED.

 

查看答案和解析>>

利用“等积”计算或说理是一种很巧妙的方法,就是一个面积从两个不同的角度表示.如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的长.
作业宝
解题思路:利用勾股定理易得AB=5利用数学公式,可得到CD=2.4
请你利用上述方法解答下面问题:
(1)如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的长.
(2)如图乙,△ABC是边长为2的等边三角形,点D是BC边上的任意一点,DE⊥AB于E点,DF⊥AC于F点,求DE+DF的值
分析:①利用备用图计算等边三角形ABC高线的长度
②连接AD,利用S△ABC=S△ADB+S△ADC
解:

查看答案和解析>>

利用“等积”计算或说理是一种很巧妙的方法,就是一个面积从两个不同的角度表示.如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的长.

解题思路:利用勾股定理易得AB=5利用S△ABC=
1
2
BC×AC=
1
2
AB×CD
,可得到CD=2.4
请你利用上述方法解答下面问题:
(1)如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的长.
(2)如图乙,△ABC是边长为2的等边三角形,点D是BC边上的任意一点,DE⊥AB于E点,DF⊥AC于F点,求DE+DF的值
分析:①利用备用图计算等边三角形ABC高线的长度
②连接AD,利用S△ABC=S△ADB+S△ADC
解:

查看答案和解析>>

我们知道三角形的一条中线能将这个三角形分成面积相等的两个三角形,反之,若经过三角形的一个顶点引一条直线将这个三角形分成面积相等两个三角形,那么这条直线平分三角形的这个顶点的对边.如图1,若S△ABD=S△ADC,则BD=CD成立.
请你直接应用上述结论解决以下问题:

(1)已知:如图2,AD是△ABC的中线,沿AD翻折△ADC,使点C落在点E,DE交AB于F,若△ADE与△ADB重叠部分面积等于△ABC面积的
1
4
,问线段AE与线段BD有什么关系?在图中按要求画出图形,并说明理由.
(2)已知:如图3,在△ABC中,∠ACB=90°,AC=2,AB=4,点D是AB边的中点,点P是BC边上的任意一点,连接PD,沿PD翻折△ADP,使点A落在E,若△PDE与△PDB重叠部分的面积等于△ABP面积的
1
4
,直接写出BP2的值.

查看答案和解析>>


同步练习册答案