1 用频率估计概率 第1题. 有大小两个转盘.其中黑色区域都是中心角为90°的扇形.为了探究指针落在黑色区域的频率.甲乙两人分别转动两转盘.记录下表(A:指针落在大转盘的黑色区域频数,B:大转盘中的频率,C:指针落在小转盘的黑色区域频数,D:小转盘中相应频率) (1)将B.D两空格填写完整, (2)分别绘出指针落在大小转盘中黑色区域的频率折线图, (3)比较25次与50次的大小频率之差及200与225次之间大小转盘两频率之差, 中频率之差及折线统计图中的变化趋势.你能总结出什么规律? 第2题. 任选一个不大于20的正整数.它恰好是3的整数倍数的概率是( ) A. B. C. D. 第3题. 初一(1)班教室里有50人在开会.其中有3名老师.12名家长.35名学生.现有校长站在门外听到有人在发言.那么发言人是老师或学生的概率为( ) A. B. C. D. 第4题. 晓刚用瓶盖设计了一个游戏:任意掷出一个盖.如果盖面朝上则甲胜.如果盖面朝下则乙胜.你认为这个游戏 如果以硬币代替瓶盖.同样做上述游戏.你认为这个游戏 . 第5题. 从1到10这10个整数中任取一数.取到奇数的概率是 .取得偶数的概率是 . 第6题. 一次抽奖活动中.印发奖券10000张.其中一等奖200张.二等奖800张.三等奖2000张.那么第一位抽奖者中奖的概率是多少?他得到一等奖.二等奖.三等奖的概率分别是多少? 第7题. 在1000000张奖券中.设有2个一等奖.10个二等奖.20个三等奖.小明从中买了一张奖卷.求 (1)分别中一等奖.二等奖.三等奖的概率, (2)中奖的概率. 第8题. 从1.2.--.100中任取一数.它既能被4整除.又能被6整除的概率是多少? 第9题. 在一副无大小王的扑克牌中.随意摸1张.摸到方块的频率( ) 第10题. 在盒子中有十个相同的小球.分别标号为1.2.-.10.从中任取一球队.那么此球的号码为偶数的概率为( ) A.1 B. C. D.0 第11题. 在一副扑克牌中.摸到“A 的频率( ) 第12题. 某科室10个人用抽签的方法分配两张观看“心连心 现场演出的票.第一个抽签的人得到票的概率是( ) A. B. C. D. 第13题. 全班50名学生.平均分成5组大扫除.某同学分在第2组的机会是 . 第14题. 一副中国象棋分红黑两方.每方有16粒棋子.把它们分别放到一个不透明的口袋里.从中任意摸一粒.摸到“马 的概率是 .摸到红“兵 的概率是 . 第15题. 用实验的方法估计可能事件的频率.应是在 条件下进行实验.随着实验次数的 .隐含的规律会逐渐显现. 答案:相同.增多. 第16题. 从一副扑克牌中随便抽取一张牌.抽到大王的概率是 ,抽到方块9的概率是 ,抽到数字是6的概率是 . 第17题. 在一次七巧板的拼图游戏中.老师要求在规定的时间内要拼A.B两种动物图案.下面是对甲乙两学校各学生统计图表: (1)对两校学生拼A.B图案的成功率做出结论, (2)结合两校所有参赛学生在A.B拼图成功率做出结论. 两结论.是否一致?你认为哪个结论较为合理?为什么? 第18题. 在两只口袋里分别放黑白球各一粒.在每一个口袋里摸一粒.记下颜色后.放到第2个口袋里.再在第2只口袋里摸一粒.两次摸到颜色相同的频率估计是( ). A. B. C. D. 第19题. 两个转盘都被分成黑白相等的两部分.甲.乙两人用它们做游戏.如果两个指针所停区域的颜色不同.则乙获胜.在这个游戏中( ) A.甲获胜可能性大 B.乙获胜可能性大 C.两人可能性一样大 D.不能确定谁获胜可能性大 第20题. 事件"随意掷两个均匀的骰子.朝上面的点数之和为1" 的概率是( ) A.1 B. C. D.0 第21题. 同时抛掷完全相同的正方体骰子.两个正面朝上的数字的和是8的机会是 .数字之积是合数的机会是 ,数字之积是奇数的机会是 .数字之积是质数的机会是 第22题. 用实验的方法估计可能事件的频率.应是在 条件下进行实验.随着实验次数的 .隐含的规律会逐渐显现. 第23题. 某同学抛出一枚硬币.结果正面朝上.他接着又抛了两次.又都是正面朝上.于是他得出一个结论:随便抛硬币若干次.正面朝上的概率等于1.他的结论是 的.(填"正确"或"不正确") 第24题. 某射击手在一次射击中射中10环.9环的概率分别为0.3和0.45则此射击手在一次射击中.射中10环或9环的概率是 . 第25题. 从1.2.--.100中任取一数.它既能被4整除.又能被6整除的概率是多少? 第26题. 一次抽奖活动中.印发奖券10000张.其中一等奖200张.二等奖800张.三等奖2000张.那么第一位抽奖者中奖的概率是多少?他得到一等奖.二等奖.三等奖的概率分别是多少? 第27题. 在1000000张奖券中.设有2个一等奖.10个二等奖.20个三等奖.小明从中买了一张奖卷.求: (1)分别中一等奖.二等奖.三等奖的概率, (2)中奖的概率. 第28题. 在一所有1200名学生的学校随机调查了200名学生.其中有125名学生在早餐时喝牛奶.在这所学校随便问一个人.早餐时喝牛奶的概率大约是 . 第29题. 从一幅扑克牌中拿出32张.牌面朝下.每次抽出一张记下花色再放回.洗牌后再抽.通过多次抽牌实验后.抽到红桃.黑桃.梅花.方块的频率依次为30%.25%.40%和5%.试估计这四种花色的扑克牌各有 . . . 张. 第30题. 从一副扑克牌中分别挑出红桃牌面数为1-6和黑桃牌面数为1-6的两组牌.从两组牌中各抽出一张.则点数相同的概率是 ,点数和是偶数的概率是 ,点数和为7的概率是 ,点数和为12的概率是 . 查看更多

 

题目列表(包括答案和解析)

8、通过实验的方法用频率估计概率的大小,必须要求实验在
相同或同等
的条件下进行.

查看答案和解析>>

精英家教网小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.
(1)你认为游戏公平吗?为什么?
(2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算某一不规则图形的面积呢”.请你设计方案,解决这一问题.(要求补充完整图形,说明设计步骤、原理,写出估算公式)

查看答案和解析>>

甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率给出的统计图精英家教网如图所示,则符合这一结果的实验可能是(  )
A、掷一枚正六面体的骰子,出现5点的概率B、掷一枚硬币,出现正面朝上的概率C、任意写出一个整数,能被2整除的概率D、一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率

查看答案和解析>>

小红和小明在操场做游戏,他们分别在地上画了周长为4米的圆和正方形(如图1),蒙上眼在精英家教网一定距离外向圆和正方形内掷小石子,谁投进的次数多谁就胜.
(1)你认为游戏公平吗?为什么?
(2)如图2是一块不规则形状的图形,你能否用频率估计概率的方法,来估算这个非规则图形的面积呢?请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)

查看答案和解析>>

通过实验的方法用频率估计概率的大小,必须要求实验是在       的条件下进行.

 

查看答案和解析>>


同步练习册答案