23.已知反比例函数经过点A. (1)求反比例函数的解析式. (3)设若反比例函数图象与一次函数图象交于A.C.根据图象写出使反比例函数值小于一次函数值的x的取值范围. 查看更多

 

题目列表(包括答案和解析)

精英家教网(任选一题,若两题都选按得分最少的题记分,本题最高10分)
(1)已知:如下图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).
①求该反比例函数的解析式;②求直线BC的解析式.
(2)己知一次函数y1=50+2x与y2=5x,回答下列问题:
①能否说函数y1的值比函数y2的值大?为什么?②这两个函数是否都随着x的增大而增大?当x增加1个单位时,这两个函数的值分别增加多少?
③当x从1开始逐渐增大时,哪个函数的值先超过100?

查看答案和解析>>

、(本题10分)我们知道,对于二次函数y=a(x+m)2+k的图像,可由函数y=ax2的图像  进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”。左右、上下平移的路径称为朋友路径,对应点之间的线段距离称为朋友距离。

由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”。

如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=.

1.(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向      ,再向下平移7单位,相应的朋友距离为            

2.(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离。

3.(3)探究三:为函数和它的基本函数,找到朋友路径,

    并求相应的朋友距离。

 

 

查看答案和解析>>

、(本题10分)我们知道,对于二次函数y=a(x+m)2+k的图像,可由函数y=ax2的图像 进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”。左右、上下平移的路径称为朋友路径,对应点之间的线段距离称为朋友距离。
由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”。
如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=.
【小题1】(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向     ,再向下平移7单位,相应的朋友距离为            
【小题2】(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离。
【小题3】(3)探究三:为函数和它的基本函数,找到朋友路径,
并求相应的朋友距离。

查看答案和解析>>

、(本题10分)我们知道,对于二次函数y=a(x+m)2+k的图像,可由函数y=ax2的图像 进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”。左右、上下平移的路径称为朋友路径,对应点之间的线段距离称为朋友距离。
由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”。
如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=.
【小题1】(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向     ,再向下平移7单位,相应的朋友距离为            
【小题2】(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离。
【小题3】(3)探究三:为函数和它的基本函数,找到朋友路径,
并求相应的朋友距离。

查看答案和解析>>

、(本题10分)我们知道,对于二次函数y=a(x+m)2+k的图像,可由函数y=ax2的图像  进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”。左右、上下平移的路径称为朋友路径,对应点之间的线段距离称为朋友距离。

由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”。

如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=.

1.(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向      ,再向下平移7单位,相应的朋友距离为            

2.(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离。

3.(3)探究三:为函数和它的基本函数,找到朋友路径,

     并求相应的朋友距离。

 

 

查看答案和解析>>


同步练习册答案