先化简:(a+.当a=.b=时.求原式的值. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分) 如图1,在底面积为l00cm2、高为20cm的长方体水槽内放人一个圆柱形烧杯.以恒定不变的流量速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h与注水时间t之间的函数关系如图2所示.

 (1)写出函数图象中点A、点B的实际意义;

  (2)求烧杯的底面积;

  (3)若烧杯的高为9cm,求注水的速度及注满水槽所用的时间.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分12分)
问题情境
已知矩形的面积为aa为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则yx的函数关系式为
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
① 填写下表,画出函数的图象:
x




1
2
3
4

y

 
 
 
 
 
 
 

②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2bxca≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

(本题满分12分)

问题情境

已知矩形的面积为aa为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的长为x,周长为y,则yx的函数关系式为

探索研究

⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①  填写下表,画出函数的图象:

x

1

2

3

4

y

 

 

 

 

 

 

 

②观察图象,写出该函数两条不同类型的性质;

③在求二次函数y=ax2bxca≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

⑵用上述方法解决“问题情境”中的问题,直接写出答案.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分12分)

问题情境

已知矩形的面积为aa为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的长为x,周长为y,则yx的函数关系式为

探索研究

⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①       填写下表,画出函数的图象:

x

1

2

3

4

y

 

 

 

 

 

 

 

 

②观察图象,写出该函数两条不同类型的性质;

③在求二次函数y=ax2bxca≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

⑵用上述方法解决“问题情境”中的问题,直接写出答案.

 

查看答案和解析>>

(本题满分12分,每小题6分)

(1) 在如图所示的平面直角坐标系中,先画出△OAB 关于y轴对称的图形,再画出△OAB绕点O旋转180°后得到的图形. 

(2)先阅读后作答:我们已经知道,根据几何图形的面积   关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a +b)( a +b) = 2a2 +3ab +b2,就可以用图22-1的面积关系来说明.

① 根据图22-2写出一个等式     ;

② 已知等式:(x +p)(x +q)=x2 + (p +q) x + pq,请你画出一个相应的几何图形加以说明.

 

查看答案和解析>>


同步练习册答案