如图.直线y=x+b交坐标轴于A.B两点.交双曲线y=于点D.过D作两坐标轴的垂线DC.DE.连接OD. (1)求证:AD平分∠CDE, (2)是否存在直线AB.使得四边形OBCD为平行四边形?若存在.求出直线的解析式,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分9分)如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交与点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x-1交抛物线于点M、N两点,过线段MN上一点P作y轴的平行线交抛物线于点Q.

(1)求此抛物线的解析式及顶点D的坐标;

(2)问点P在何处时,线段PQ最长,最长为多少?

(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分10分)如图,在平面直角坐标系中,把抛物线向左平移1个单位,再向下平移4个单位,得到抛物线.所得抛物线与轴交于两点(点在点的左边),与轴交于点,顶点为.

(1)写出的值;

(2)判断的形状,并说明理由;

(3)在线段上是否存在点,使?若存在,求出点的坐标;若不存在,说明理由.

 

查看答案和解析>>

(本题满分7分)
将直角边长为6的等腰RtAOC放在如图所示的平面直角坐标系中,点O为坐标原点,点CA分别在xy轴的正半轴上,一条抛物线经过点AC及点B(–3,0).

【小题1】(1)求该抛物线的解析式;
【小题2】(2)若点P是线段BC上一动点,过点PAB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
【小题3】(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

(本题满分9分)如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交与点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x-1交抛物线于点M、N两点,过线段MN上一点P作y轴的平行线交抛物线于点Q.
(1)求此抛物线的解析式及顶点D的坐标;
(2)问点P在何处时,线段PQ最长,最长为多少?
(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.
 

查看答案和解析>>

(本题满分10分)如图,在平面直角坐标系中,把抛物线向左平移1个单位,再向下平移4个单位,得到抛物线.所得抛物线与轴交于两点(点在点的左边),与轴交于点,顶点为.
(1)写出的值;
(2)判断的形状,并说明理由;
(3)在线段上是否存在点,使?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>


同步练习册答案