26.探索问题: (1)用“> .“< .“= 号填空. -- (2)根据以上结果.你发现此类式子有何规律?请用含正数a的式子表示出来.并指出等 号成立时的条件. (3)试根据上述规律解答下题: 现要制作一个长方形镜框.使镜框四周围成的面积为4m.请设计出一种方案.使镜框的周长最小.并说明你设计的理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

问题情境

已知矩形的面积为aa为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的长为x,周长为y,则yx的函数关系式为

探索研究

⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①  填写下表,画出函数的图象:

x

1

2

3

4

y

 

 

 

 

 

 

 

②观察图象,写出该函数两条不同类型的性质;

③在求二次函数y=ax2bxca≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

⑵用上述方法解决“问题情境”中的问题,直接写出答案.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分12分)

问题情境

已知矩形的面积为aa为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的长为x,周长为y,则yx的函数关系式为

探索研究

⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①       填写下表,画出函数的图象:

x

1

2

3

4

y

 

 

 

 

 

 

 

 

②观察图象,写出该函数两条不同类型的性质;

③在求二次函数y=ax2bxca≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

⑵用上述方法解决“问题情境”中的问题,直接写出答案.

 

查看答案和解析>>

(本题满分12分)

问题情境

已知矩形的面积为aa为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的长为x,周长为y,则yx的函数关系式为

探索研究

⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①      填写下表,画出函数的图象:

x

1

2

3

4

y

 

 

 

 

 

 

 

 

②观察图象,写出该函数两条不同类型的性质;

③在求二次函数y=ax2bxca≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

⑵用上述方法解决“问题情境”中的问题,直接写出答案.

 

查看答案和解析>>

(本题满分12分)
问题情境
已知矩形的面积为aa为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则yx的函数关系式为
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
① 填写下表,画出函数的图象:
x




1
2
3
4

y

 
 
 
 
 
 
 

②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2bxca≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

如图12-1,已知直线y= -x+4交x轴于点A,交y轴于点B.

(1)写出A、B两点的坐标分别是:                                
(2)设点P是射线y = x()上一点,点P的横坐标为t,M是OP的中点(O是原点),以PM为对角线作正方形PDME.正方形PDME与△OAB公共部分的面积为S,求S与t之间的函数关系式,并求S的最大值.(图12-2、12-3供你探索问题时使用)

查看答案和解析>>


同步练习册答案