如图14.已知△ABC是等腰直角三角形.∠BAC=90°.BE是∠ABC的平分线.DE⊥BC.垂足为D. (1)请你写出图中所有的等腰三角形, (2)请你判断AD与BE垂直吗?并说明理由. (3)如果BC=10.求AB+AE的长. 查看更多

 

题目列表(包括答案和解析)

如图14,已知点A(-1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=900,抛物线经过A、B、C三点,其顶点为M.
求抛物线的解析式;
试判断直线CM与以AB为直径的圆的位置关系,并加以证明;
在抛物线上是否存在点N,使得?如果存在,那么这样的点有几个?如果不存在,请说明理由。

查看答案和解析>>

如图14,已知半径为1的轴交于两点,的切线,切点为,圆心的坐标为,二次函数的图象经过两点.

(1)求二次函数的解析式;

(2)求切线的函数解析式;

(3)线段上是否存在一点,使得以为顶点的三角形与相似.若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

如图14,已知点A(-1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=900,抛物线经过A、B、C三点,其顶点为M.

求抛物线的解析式;

试判断直线CM与以AB为直径的圆的位置关系,并加以证明;

在抛物线上是否存在点N,使得?如果存在,那么这样的点有几个?如果不存在,请说明理由。

 

查看答案和解析>>

如图14,已知抛物线 与x轴的一个交点A的坐标为(-1,0),对称轴为直线 x = 2.

(1)求抛物线与x轴的另一个交点B的坐标;

(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点。已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;

(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动。设点P运动的时间为t秒。

①当t为     秒是,△PAD的周长最小?当t为     秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)

       ②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

城市规划期间,欲拆除一电线杆AB(如图),已知与电线杆AB水平距离14米的D处有一等腰梯形大坝CDEF,该梯形的上底CF长为3米,下底DE长为5米,∠CDE=60°,在坝顶C处测得杆顶A的仰角为30°,D、G之间是宽3米的人行道.试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封闭?请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)精英家教网

查看答案和解析>>


同步练习册答案