附加题(6分.得分可以记入总分.但总分超过100分.按100分计) 如图.在矩形ABCD中.AB=12厘米.BC=6厘米.点P沿AB边从点A开始向点B以2厘米/秒的速度移动,点Q沿DA边从点D开始向点A以1厘米/秒的速度移动. 如果P.Q同时出发.用t(秒)表示移动的时间当t为何值时.△QAP为等腰直角三角形? (2)求四边形QAPC的面积,提出一个与计算结果有关的结论, (3)当t为何值时.以点Q.A.P为顶点的三角形与△ABC相似? 查看更多

 

题目列表(包括答案和解析)

如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2),(3),(4),(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2),(3),(4),(5)中,h1、h2、h3、h之间的关系;(直接写出结论)图②-⑤中的关系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)证明图(2)所得结论;
(3)证明图(4)所得结论;
(4)(附加题2分)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:h1+h3+h4=
mhm-n
.图(4)与图(6)中的等式有何关系.
精英家教网

查看答案和解析>>

附加题(10分)
某公司为了支援山区学校的建设,捐助床架60个.课桌100套,现计划租甲乙两种货车共8辆将这些物资运往山区,已知一辆甲货车可装床架5个和课桌20套.一辆乙货车可装床架10个和课桌10套.
(1)公司如何安排甲乙两种货车可一次性把这些货物运到山区,有几种方案?
(2)若甲种货车每辆要付运输费1200元,乙种货车每辆要付出运费1000元,则公司应选择哪种方案使运费最少?最少运费是多少?

查看答案和解析>>

附加题(10分)

某公司为了支援山区学校的建设,捐助床架60个.课桌100套,现计划租甲乙两种货车共8辆将这些物资运往山区,已知一辆甲货车可装床架5个和课桌20套.一辆乙货车可装床架10个和课桌10套.

(1)公司如何安排甲乙两种货车可一次性把这些货物运到山区,有几种方案?

(2)若甲种货车每辆要付运输费1200元,乙种货车每辆要付出运费1000元,则公司应选择哪种方案使运费最少?最少运费是多少?

 

查看答案和解析>>

附加题(10分)

某公司为了支援山区学校的建设,捐助床架60个.课桌100套,现计划租甲乙两种货车共8辆将这些物资运往山区,已知一辆甲货车可装床架5个和课桌20套.一辆乙货车可装床架10个和课桌10套.

(1)公司如何安排甲乙两种货车可一次性把这些货物运到山区,有几种方案?

(2)若甲种货车每辆要付运输费1200元,乙种货车每辆要付出运费1000元,则公司应选择哪种方案使运费最少?最少运费是多少?

 

查看答案和解析>>

附加题(10分)
某公司为了支援山区学校的建设,捐助床架60个.课桌100套,现计划租甲乙两种货车共8辆将这些物资运往山区,已知一辆甲货车可装床架5个和课桌20套.一辆乙货车可装床架10个和课桌10套.
(1)公司如何安排甲乙两种货车可一次性把这些货物运到山区,有几种方案?
(2)若甲种货车每辆要付运输费1200元,乙种货车每辆要付出运费1000元,则公司应选择哪种方案使运费最少?最少运费是多少?

查看答案和解析>>


同步练习册答案