如图1.点将线段分成两部分.如果.那么称点为线段的黄金分割点. 某研究小组在进行课题学习时.由黄金分割点联想到“黄金分割线 .类似地给出“黄金分割线 的定义:直线将一个面积为的图形分成两部分.这两部分的面积分别为..如果.那么称直线为该图形的黄金分割线. (1)研究小组猜想:在中.若点为边上的黄金分割点.则直线是的黄金分割线.你认为对吗?为什么? (2)请你说明:三角形的中线是否也是该三角形的黄金分割线? (3)研究小组在进一步探究中发现:过点任作一条直线交于点.再过点作直线.交于点.连接.则直线也是的黄金分割线.请你说明理由. (4)如图4.点是□的边的黄金分割点.过点作.交于点.显然直线是□的黄金分割线.请你画一条□的黄金分割线.使它不经过□各边黄金分割点. 查看更多

 

题目列表(包括答案和解析)

24、如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.
(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

查看答案和解析>>

如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.
(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

查看答案和解析>>

如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.
(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

查看答案和解析>>

如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.
(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

查看答案和解析>>

如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.
(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

查看答案和解析>>


同步练习册答案