24. 如图.正方形OABC的面积为4.点D为坐标原点.点B在函数的 图象上.点P(m.n)是函数的图象上异于B的任意一点.过点P分别 作x轴.).轴的垂线.垂足分别为E.F. (1)设矩形OEPF的面积为.求, (2)从矩形DEPF的面积中减去其与正方形OABC重合的面积.剩余面积记为.写出. 与m的函数关系式.并标明m的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)如图甲,分别以两个彼此相邻的正方形?OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.

1.(1)求B点坐标;

2.(2)求证:ME是⊙P的切线;

3.(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;

②若FQ=t,SACQ=S,直接写出S与t之间的函数关系式.

 

查看答案和解析>>

(本题满分12分)如图甲,分别以两个彼此相邻的正方形?OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.

【小题1】(1)求B点坐标;
【小题2】(2)求证:ME是⊙P的切线;
【小题3】(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;
②若FQ=t,SACQ=S,直接写出S与t之间的函数关系式.

查看答案和解析>>

(本题满分12分)如图甲,分别以两个彼此相邻的正方形?OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.

1.(1)求B点坐标;

2.(2)求证:ME是⊙P的切线;

3.(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;

②若FQ=t,SACQ=S,直接写出S与t之间的函数关系式.

 

查看答案和解析>>

(本题满分9分)如图,边长为4的正方形OABC的顶点O为坐标原点,点A

在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),

连接OD,过点D作DE⊥OD,交边AB于点E,连接OE。

(1)当CD=1时,求点E的坐标;

(2)如果设CD=t,梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这

个最大值及此时t的值;若不存在,请说明理由。

 

查看答案和解析>>

(本题满分9分)如图,边长为4的正方形OABC的顶点O为坐标原点,点A
在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),
连接OD,过点D作DE⊥OD,交边AB于点E,连接OE。
(1)当CD=1时,求点E的坐标;
(2)如果设CD=t,梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这
个最大值及此时t的值;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案