如图所示.∠1=∠2.∠3=∠4.求证:AC=AD 查看更多

 

题目列表(包括答案和解析)

10、完成下列分析过程.
如图所示,已知AB∥DC,AD∥BC,求证:AB=CD.
分析:要证AB=CD,只要证△
ABC
≌△
CDA
;需先证∠
BAC
=∠
DCA
,∠
ACB
=∠
CAD
.由已知“
AB
DC
”,可推出∠
BAC
=∠
DCA
AD
BC
,可推出∠
ACB
=∠
CAD
,且公共边
AC
=
CA
,因此,可以根据“
角边角公理(ASA)
”判定△
ABC
≌△
CDA

查看答案和解析>>

在Rt△ABC中,∠ACB=90°,tan∠BAC=.点D在边AC上(不与A,C重合),连结BD,F为BD中点.

1.若过点D作DE⊥AB于E,连结CF、EF、CE,如图1. 设

则k =       

2.若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示. 求证:BE-DE=2CF;

3.若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.

 

查看答案和解析>>

在Rt△ABC中,∠ACB=90°,tan∠BAC=. 点D在边AC上(不与A,C重合),连结BD,F为BD中点.

1.若过点D作DE⊥AB于E,连结CF、EF、CE,如图1. 设

则k =       

2.若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示. 求证:BE-DE=2CF;

3.若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.

 

查看答案和解析>>

在Rt△ABC中,∠ACB=90°,tan∠BAC=. 点D在边AC上(不与AC重合),连结BDFBD中点.

(1)若过点DDEABE,连结CFEFCE,如图1.设,则k =       
(2)若将图1中的△ADE绕点A旋转,使得DEB三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF
(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.

查看答案和解析>>

在Rt△ABC中,∠ACB=90°,tan∠BAC=. 点D在边AC上(不与AC重合),连结BDFBD中点.

(1)若过点DDEABE,连结CFEFCE,如图1.设,则k =       

(2)若将图1中的△ADE绕点A旋转,使得DEB三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF

(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.

 

查看答案和解析>>


同步练习册答案