在梯形ABCD中.∠B=900.AB=14cm .AD=18cm .BC=21cm.点P从点A开始沿AD边向点D以1 cm/s的速度移动.点Q从点C开始沿CB向点B以2cm/s的速度移动.如果点P.Q分别从两点同时出发.当其中某一点到达端点时.另一点也随之停止运动.(1)t为何值时.梯形PBQD是平行四边形.(2)t为何值时.梯形PBQD是等腰梯形. 查看更多

 

题目列表(包括答案和解析)

(本题12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转。

(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明。

(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。

(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=时,求PE及DH的长。

 

 

 

 

 

查看答案和解析>>

(本题12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转。

(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明。
(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。
(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=时,求PE及DH的长。

查看答案和解析>>

(本题12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转。

(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明。

(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。

(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=时,求PE及DH的长。

 

 

 

 

 

查看答案和解析>>

(本题12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转。

(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明。
(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。
(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=时,求PE及DH的长。

查看答案和解析>>

如图,在梯形ABCD中,AD∥BC,AD=a,BC=b.
若E1、F1分别是AB、DC的中点,则E1F1=
1
2
(AD+BC)=
1
2
(a+b);
若E2,F2分别是E1B,F1C的中点,则E2F2=
1
2
(E1F1+BC)=
1
2
[
1
2
(a+b)+b]=
1
4
(a+3b);当E3,F3分别是E2B,F2C的中点,则E3F3=
1
2
(E2F2+BC)=
1
2
[
1
4
(a+3b)+b]=
1
8
(a+7b);若EnFn分别是En-1,Fn-1的中点,根据上述规律猜想EnFn=
 
.(n≥1,n为整数)
精英家教网

查看答案和解析>>


同步练习册答案