6.求下列各式中的x: (1)7:4=11:x, :x. 查看更多

 

题目列表(包括答案和解析)

求下列各式中的x:

(1)|x|=;(2)|x2-5|=11.

查看答案和解析>>

阅读下列材料,然后回答所提出的问题.
(1)
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
(
1
3
-
1
5
).
1
5×7
=
1
2
(
1
5
-
1
7
)

于是
1
1×3
+
1
3×5
+
1
5×7

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
)

=
1
2
(1-
1
7
)=
3
7

(2)上面求的方法是通过逆用分数减法法则,将和式中各分数转化为两个分数之差,使得除首末两项外的中间各项可以互相抵消,从而达到求和的目的.
通过阅读,你学会一种解决问题的方法了吗?试用学到的方法计算:
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)

1
a(a+1)
+
1
(a+1)(a+2)
+
1
(a+2)(a+3)
+
1
(a+2006)(a+2007)

查看答案和解析>>

阅读下列材料:
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
(
1
3
-
1
5
),
1
5×7
=
1
2
(
1
5
-
1
7
)…
1
17×19
=
1
2
(
1
17
-
1
19
)

1
1×3
+
1
3×5
+
1
5×7
+
1
7×9
+…+
1
17×19
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
17
-
1
19
)=
9
19

解答问题:
(1)在式
1
1×3
+
1
3×5
+
1
5×7
中,第六项为
 
,第n项为
 
,上述求和的想法是通过逆用
 
法则,将式中各分数转化为两个实数之差,使得除首末两项外的中间各项可以
 
从而达到求和的目的;
(2)解方程
1
x(x+2)
+
1
(x+2)(x+4)
+…+
1
(x+8)(x+10)
=
5
24

查看答案和解析>>

阅读下列材料,然后回答所提出的问题.
(1)
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
(
1
3
-
1
5
).
1
5×7
=
1
2
(
1
5
-
1
7
)

于是
1
1×3
+
1
3×5
+
1
5×7

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
)

=
1
2
(1-
1
7
)=
3
7

(2)上面求的方法是通过逆用分数减法法则,将和式中各分数转化为两个分数之差,使得除首末两项外的中间各项可以互相抵消,从而达到求和的目的.
通过阅读,你学会一种解决问题的方法了吗?试用学到的方法计算:
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)

1
a(a+1)
+
1
(a+1)(a+2)
+
1
(a+2)(a+3)
+
1
(a+2006)(a+2007)

查看答案和解析>>

(12)观察下列各式:
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5
,…
(1)用含有n(n为正整数)的式子表示上述过程中的规律
1
n(n+1)
=
1
n
-
1
n+1
1
n(n+1)
=
1
n
-
1
n+1

(2)用你发现的规律解答下面问题:已知a,b是有理数,且|ab-2|与|b-1|互为相反数.
求 
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2011)(b+2011)
的值.

查看答案和解析>>


同步练习册答案