20.如图.中.∠B=∠C.D.E.F分别在..上.且..求证:. 证明:∵∠DEC=∠B+∠BDE. 又∵∠DEF=∠B. ∴∠ =∠ . 在△EBD与△FCE中. ∠ =∠ . = . ∠B=∠C. ∴. ∴ED=EF. 查看更多

 

题目列表(包括答案和解析)

如图,已知直角梯形OABC的边OAy轴的正半轴上,OCx轴的正半轴上,OAAB=2,OC=3,过点BBDBC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴与x轴的正半轴于EF两点.

(1)求经过ABC三点的抛物线的解析式;

(2)当BE经过(1)中抛物线的顶点时,求CF的长;

(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

查看答案和解析>>

如图,在直角坐标系中,直线分别与x轴、y轴交于点M、N,点A、B分别在y轴、x轴上,且∠B=30°,AB=4,将△ABO绕原点O顺时针转动一周,当AB与直线MN平行时点A的坐标为  ▲   .

 

查看答案和解析>>

 

如图,在平面直角坐标系xOy中, 正方形OABC的边长为2cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=a+bx+c经过点A、B,最低点为M,且

(1)求此抛物线的解析式.,并说明这条抛物线是由抛物线y=a 怎样平移得到的。

(2)如果点P由点A开始沿着射线AB以2cm/s的速度移动, 同时点Q由点B开始沿BC边以1cm/s的速度向点C移动,当其中一点到达终点时运动结束.

①在运动过程中,P、Q两点间的距离是否存在最小值,如果存在,请求出它的最小值。

②当PQ取得最小值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是梯形? 如果存在, 求出R点的坐标, 如果不存在, 请说明理由.

 

查看答案和解析>>

如图,ABC中,ABC=BAC=,点P在AB上,ADCP,BECP,垂足分别为D、E,已知DC=2,求BE的长。

查看答案和解析>>


如图,在平面直角坐标系xOy中, 正方形OABC的边长为2cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=a+bx+c经过点A、B,最低点为M,且

(1)求此抛物线的解析式.,并说明这条抛物线是由抛物线y=a怎样平移得到的。
(2)如果点P由点A开始沿着射线AB以2cm/s的速度移动, 同时点Q由点B开始沿BC边以1cm/s的速度向点C移动,当其中一点到达终点时运动结束.
①在运动过程中,P、Q两点间的距离是否存在最小值,如果存在,请求出它的最小值。
②当PQ取得最小值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是梯形? 如果存在, 求出R点的坐标, 如果不存在, 请说明理由.

查看答案和解析>>


同步练习册答案