17.如图.在四边形ABCD中.AD∥BC.BC=2AD.E是BC的中点. 求证:四边形AECD是平行四边形. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)在四边形ABCD中,AD=a,CD=b,点E在射线BA上,点F在射线BC上.

观察计算:

(1)如图①,若四边形ABCD是矩形,E是AB的中点.F是BC的中点,则四边形DEBF   的面积S四边形DEBF=_______.

(2)若四边形ABCD是平行四边形,E是AB的中点,F是BC的中点,则S四边形DEBF:S四边形ABCD=_______.

(3)如图②,若四边形ABCD是平行四边形,且BE:AB=2:3,BF:BC=2:3,则S四边形DEBF:S四边形ABCD=_______.

探索规律:

如图③,在四边形ABCD中,若BE:AB=n:m,BF:BC=n:m,试猜想S四边形DEBF:S四边形ABCD=_______,请说明理由.

   解决问题:

   如图④,某小区角落有一四边形空地,为了充分利用空间,美化环境,想把它沿两侧墙壁改造为一块绿地,使绿地面积是原空地面积的3倍.请分别在两侧墙壁上确定点E、F,画出改造线DE、DF,并写出作法.

 

查看答案和解析>>

(本题满分12分)在四边形ABCD中,AD=a,CD=b,点E在射线BA上,点F在射线BC上.

观察计算:
(1)如图①,若四边形ABCD是矩形,E是AB的中点.F是BC的中点,则四边形DEBF   的面积S四边形DEBF=_______.
(2)若四边形ABCD是平行四边形,E是AB的中点,F是BC的中点,则S四边形DEBF:S四边形ABCD=_______.
(3)如图②,若四边形ABCD是平行四边形,且BE:AB=2:3,BF:BC=2:3,则S四边形DEBF:S四边形ABCD=_______.
探索规律:
如图③,在四边形ABCD中,若BE:AB=n:m,BF:BC=n:m,试猜想S四边形DEBF:S四边形ABCD=_______,请说明理由.
 解决问题:
 如图④,某小区角落有一四边形空地,为了充分利用空间,美化环境,想把它沿两侧墙壁改造为一块绿地,使绿地面积是原空地面积的3倍.请分别在两侧墙壁上确定点E、F,画出改造线DE、DF,并写出作法.

查看答案和解析>>

(本题满分12分)在四边形ABCD中,AD=a,CD=b,点E在射线BA上,点F在射线BC上.

观察计算:

(1)如图①,若四边形ABCD是矩形,E是AB的中点.F是BC的中点,则四边形DEBF    的面积S四边形DEBF=_______.

(2)若四边形ABCD是平行四边形,E是AB的中点,F是BC的中点,则S四边形DEBF:S四边形ABCD=_______.

(3)如图②,若四边形ABCD是平行四边形,且BE:AB=2:3,BF:BC=2:3,则S四边形DEBF:S四边形ABCD=_______.

探索规律:

如图③,在四边形ABCD中,若BE:AB=n:m,BF:BC=n:m,试猜想S四边形DEBF:S四边形ABCD=_______,请说明理由.

   解决问题:

   如图④,某小区角落有一四边形空地,为了充分利用空间,美化环境,想把它沿两侧墙壁改造为一块绿地,使绿地面积是原空地面积的3倍.请分别在两侧墙壁上确定点E、F,画出改造线DE、DF,并写出作法.

 

查看答案和解析>>

(本题满分12分)在四边形ABCD中,AD=a,CD=b,点E在射线BA上,点F在射线BC上.

观察计算:
(1)如图①,若四边形ABCD是矩形,E是AB的中点.F是BC的中点,则四边形DEBF   的面积S四边形DEBF=_______.
(2)若四边形ABCD是平行四边形,E是AB的中点,F是BC的中点,则S四边形DEBF:S四边形ABCD=_______.
(3)如图②,若四边形ABCD是平行四边形,且BE:AB=2:3,BF:BC=2:3,则S四边形DEBF:S四边形ABCD=_______.
探索规律:
如图③,在四边形ABCD中,若BE:AB=n:m,BF:BC=n:m,试猜想S四边形DEBF:S四边形ABCD=_______,请说明理由.
 解决问题:
 如图④,某小区角落有一四边形空地,为了充分利用空间,美化环境,想把它沿两侧墙壁改造为一块绿地,使绿地面积是原空地面积的3倍.请分别在两侧墙壁上确定点E、F,画出改造线DE、DF,并写出作法.

查看答案和解析>>

梯形ABCD中,DC∥AB,DE⊥AB于点E.
阅读理解:
在图①中,延长梯形ABCD的两腰AD、BC交于点P,过点D作DF∥CB交AB于点F,得到图②;四边形BCDF的面积为S,△ADF的面积S1,△PDC的面积S2
解决问题:
(1)在图②中,若DC=2,AB=8,DE=3,则S=
6
6
,S1=
9
9
,S2=
1
1
,则
S2
S1S2
=
4
4

(2)在图②中,若AB=a,DC=b,DE=h,则
S2
S1S2
=
4
4
,并写出理由;
拓展应用:
如图③,现有地块△PAB需进行美化,□DEFC的四个顶点在△PAB的三边上,且种植茉莉;若△PDC、△ADE、△CFB的面积分别为2m2、3m2、5m2且种植月季.1m2茉莉的成本是120元,1m2月季的成本是80元.试利用(2)中的结论求□DEFC的面积.并求美化后的总成本是多少?

查看答案和解析>>


同步练习册答案