如图5.在△ABC中三个顶点的坐标分别为A.将△ABC沿x轴正方向平移2个单位长度.再沿y轴沿负方向平移1个单位长度得到△EFG. 求△EFG的三个顶点坐标. 查看更多

 

题目列表(包括答案和解析)

如图,在△ABC中,∠ACB=90°,CD⊥AB,
(1)图1中共有
3
3
对相似三角形,写出来分别为
△ABC∽△ACD,△ABC∽△CBD,△ABC∽△CBD
△ABC∽△ACD,△ABC∽△CBD,△ABC∽△CBD
(不需证明);
(2)已知AB=10,AC=8,请你求出CD的长;
(3)在(2)的情况下,如果以AB为x轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如图2),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q出B点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,9).请在如图所示的平面直角坐标系中,画出△ABC,并作出它关于y轴对称的三角形△A′B′C′,写出相应的对称点坐标.

查看答案和解析>>

如图,在△ABC中,AB=2,AC=BC=数学公式
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=数学公式S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).

附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=数学公式,y4=-数学公式
所以,原方程的解是y1=1,y2=-1,y3=数学公式,y4=-数学公式
再如x2-2=4数学公式,可设y=数学公式,用同样的方法也可求解.

查看答案和解析>>

如图,在△ABC中,AB=2,AC=BC= 5 .
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3= ,y4=- .所以,原方程的解是y1=1,y2=-1,y3=
y4=-  ,再如 ,可设 ,用同样的方法也可求解.

查看答案和解析>>

如图,在△ABC中,AB=2,AC=BC= 5 .

(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;

(2)求过A、B、C三点且以C为顶点的抛物线的解析式;

(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC

(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).

附:阅读材料

一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.

解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.

当x1=1时,即y2=1,∴y1=1,y2=-1.

当x2=3,即y2=3,∴y3= 3 ,y4=- 3 .

所以,原方程的解是y1=1,y2=-1,y3= 3 ,y4=- 3 .

再如 ,可设 ,用同样的方法也可求解.

查看答案和解析>>


同步练习册答案