2.解答: (1)已知:如图∠B=∠E=90°AC=DF FB=EC 求证:AB=DE. (2)已知:如图AB⊥BD.CD⊥BD.AB=DC求证:AD//BC. (3)已知如图.AC⊥BC.AD⊥BD.AD=BC.CE⊥AB.DF⊥AB.垂足分别是E.F 求证:CE=DF. 查看更多

 

题目列表(包括答案和解析)

先阅读,再解答下列问题.
已知(a2+b24-8(a2+b22+16=0,求a2+b2的值.
错解:设(a2+b22=m,则原式可化为m2-8m+16=0,即(m-4)2=0,解得m=4.由(a2+b22=4,得a2+b2=±2.
(1)上述解答过程出错在哪里?为什么?
(2)请你用以上方法分解因式:(a+b)2-14(a+b)+49.

查看答案和解析>>

填空:
(1)方程x2+2x+1=0的根为x1=
-1
-1
,x2=
-1
-1
,则x1+x2=
-2
-2
,x1•x2=
1
1

(2)方程x2-3x-1=0的根为x1=
3+
13
2
3+
13
2
,x2=
3-
13
2
3-
13
2
,则x1+x2=
3
3
,x1•x2=
-1
-1

(3)方程3x2+4x-7=0的根为x1=
-
7
3
-
7
3
,x2=
1
1
,则x1+x2=
-
4
3
-
4
3
,x1•x2=
-
7
3
-
7
3

由(1)(2)(3)你能得到什么猜想?并证明你的猜想.请用你的猜想解答下题:已知22+
3
是方程x2-44x+C=0的一个根,求方程的另一个根及C的值.

查看答案和解析>>

阅读材料:
如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=-
b
a
,x1x2=
c
a

这是一元二次方程根与系数的关系,我们利用它可以用来解题:
设x1,x2是方程x2+6x-3=0的两根,求x
 
2
1
+x
 
2
2
的值.
解法可以这样:∵x1+x2=-6,x1x2=-3,则x
 
2
1
+x
 
2
2
=(x1+x22-2x1x2=(-6)2-2×(-3)=42.
请你根据以上解法解答下题:
已知x1,x2是方程x2-4x+2=0的两根,求:
(1)
1
x1
+
1
x2
的值;
(2)(x1-x22的值.

查看答案和解析>>

阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=
3
2
,b=
3
2
.a=b=
3
2
,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=
m
2
+t,y=
m
2
-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>

已知一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则有x1+x2=-
b
a
;x1x2=
c
a

请应用以上结论解答下列问题:
已知方程x2-4x-1=0有两个实数根x1,x2,要求不解方程,
求值:(1)(x1+1)(x2+1)       (2)
x2
x1
+
x1
x2

查看答案和解析>>


同步练习册答案