如图10.AD是等边三角形ABC的中线.E为AB上一点.且AE=AD.则 ∠ADE= 查看更多

 

题目列表(包括答案和解析)

△ABC是等边三角形,点D是射线上BC上的一个动点(点D不与点B,C重合,△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB,AC于点F,G,连接BE。  (10′)
如图1所示,当点D在线段BC上时。(1)求证:△AEB≌△ADC;(2)探究四边形BCGE是哪种特殊的四边形,并说明理由。如图2所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立。

查看答案和解析>>

△ABC是等边三角形,点D是射线上BC上的一个动点(点D不与点B,C重合,△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB,AC于点F,G,连接BE。   (10′)

如图1所示,当点D在线段BC上时。(1)求证:△AEB≌△ADC;(2)探究四边形BCGE是哪种特殊的四边形,并说明理由。如图2所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立。

 

查看答案和解析>>

△ABC是等边三角形,点D是射线上BC上的一个动点(点D不与点B,C重合,△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB,AC于点F,G,连接BE。  (10′)
如图1所示,当点D在线段BC上时。(1)求证:△AEB≌△ADC;(2)探究四边形BCGE是哪种特殊的四边形,并说明理由。如图2所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立。

查看答案和解析>>

△ABC是等边三角形,点D是射线上BC上的一个动点(点D不与点B,C重合,△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB,AC于点F,G,连接BE。   (10′)

如图1所示,当点D在线段BC上时。(1)求证:△AEB≌△ADC;(2)探究四边形BCGE是哪种特殊的四边形,并说明理由。

如图2所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立。


查看答案和解析>>

如图10-1,在△A B B′和△A C C′中,∠B A B′=∠C A C′=m°,AC=AC',AB=AB'.
(1)不添加辅助线的前提下,请写出图中满足旋转变换的两个三角形分别是:           ;旋转角度是            °;
(2)线段BC、B'C'的数量关系是:         ;试求出BC、B'C'所在直线的夹角:         

(3)随着△ACC'绕点A的旋转,(2)的结论是否依然成立?请从图10-2、图10-3中任选一个证明你的结论;
(4)利用解决上述问题所获得的经验探索下面的问题:如图10-4,等边△ABC外一点D,且∠BDC=60°,连接AD,试探索线段AD、CD、BD的数量关系.
 

查看答案和解析>>


同步练习册答案