如图所示,在△ABC中,D.E分别是AC和AB上的一点,BD与CE交于点O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC, 查看更多

 

题目列表(包括答案和解析)

25、如图所示,在△ABC中,D、E分别是AC、AB上的点,BD与CE交于点0,给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.
(1)由上述三个条件中的①和③能判定△ABC是等腰三角形吗?请说明理由;
(2)除(1)中的一种情况外,还有哪两个条件可判定△ABC是等腰三角形(用序号写出所有情况),并证明.

查看答案和解析>>

如图所示,在△ABC中,D、E分别是AC、AB上的点,BD与CE交于点0,给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.
(1)由上述三个条件中的①和③能判定△ABC是等腰三角形吗?请说明理由;
(2)除(1)中的一种情况外,还有哪两个条件可判定△ABC是等腰三角形(用序号写出所有情况),并证明.

查看答案和解析>>

如图1,将两个完全相同的三角形纸片ABCDEC重合放置,其中∠C=90°,∠B=∠E=30°.

(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:

①线段DEAC的位置关系是   

②设△BDC的面积为S1,△AEC的面积为S2,那么S1S2之间的数量关系是   

(2)猜想论证

当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1S2的数量关系仍然成立,并尝试分别作出了△BDC和△AECBCCE边上的高,请你证明小明的猜想;

 


(3)拓展探究

       已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//ABBC于点E(如图4).

若在射线BA上存在点F,使SDCF=SBDE,请直接写出相应的BF的长.

查看答案和解析>>

如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是______;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是______.

(2)猜想论证
当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.

查看答案和解析>>

(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是
DE∥AC
DE∥AC

②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是
S1=S2
S1=S2


(2)猜想论证
当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.

查看答案和解析>>


同步练习册答案