2.由,得,即-① ,同理可得-②, -③.所以①+②+③得,∴∴,∴=. 总结:巧妙地取倒数是解答此题的关键.由此看来.对于复杂的分式求值题应考虑从多个角度变形已知条件.当然.这离不开细致的观察.比较和日常方法的积累. 查看更多

 

题目列表(包括答案和解析)

先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式x2-9>0.
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)
x+3>0
x-3>0
(2)
x+3<0
x-3<0

解不等式组(1),得x>3,
解不等式组(2),得x<-3,
故(x+3)(x-3)>0的解集为x>3或x<-3,
即一元二次不等式x2-9>0的解集为x>3或x<-3.
问题:
(1)求关于x的两个多项式的商组成不等式
3x-7
2x-9
<0
的解集;
(2)若a,b是(1)中解集x的整数解,以a,b,c为△ABC为边长,c是△ABC中的最长的边长.
①求c的取值范围.
②若c为整数,求这个等腰△ABC的周长.

查看答案和解析>>

(2012•湛江)先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式x2-4>0
解:∵x2-4=(x+2)(x-2)
∴x2-4>0可化为
(x+2)(x-2)>0
由有理数的乘法法则“两数相乘,同号得正”,得
x+2>0
x-2>0
 
x+2<0
x-2<0

解不等式组①,得x>2,
解不等式组②,得x<-2,
∴(x+2)(x-2)>0的解集为x>2或x<-2,
即一元二次不等式x2-4>0的解集为x>2或x<-2.
(1)一元二次不等式x2-16>0的解集为
x>4或x<-4
x>4或x<-4

(2)分式不等式
x-1
x-3
>0
的解集为
x>3或x<1
x>3或x<1

(3)解一元二次不等式2x2-3x<0.

查看答案和解析>>

先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式x2-9>0.
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)
x+3>0
x-3>0
(2)
x+3<0
x-3<0

解不等式组(1),得x>3,
解不等式组(2),得x<-3,
故(x+3)(x-3)>0的解集为x>3或x<-3,
即一元二次不等式x2-9>0的解集为x>3或x<-3.
问题:求分式不等式
5x+1
2x-3
<0
的解集.

查看答案和解析>>

(1)自主阅读:如图1,AD∥BC,连接AB、AC、BD、CD,则S△ABC=S△BCD
证明:分别过点A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因为S△ABC=
1
2
×BC×AF,S△BCD=
1
2
×
BC×DE
所以S△ABC=S△BCD
由此我们可以得到以下的结论:像图1这样,
同底等高的两三角形面积相等
同底等高的两三角形面积相等

(2)结论证明:如果一条直线(线段)把一个平面图形的面积分成相等的两部分,我们把这条直线(线段)称为这个平面图形的一条面积等分线(段),如,平行四变形的一条对角线就是平形四边形的一条面积等分线段.
①如图2,梯形ABCD中AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,则AP即为梯形ABCD的面积等分线段,请你写出这个结论成立的理由:
②如图3,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否做出四边形ABCD的面积等分线(段)?若能,请画出面积等分线(用钢笔或圆珠笔画图,不用写作法),不要证明

查看答案和解析>>

先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式x2﹣4>0
解:∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化为
(x+2)(x﹣2)>0
由有理数的乘法法则“两数相乘,同号得正”,得

解不等式组①,得x>2,
解不等式组②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,
即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.
(1)一元二次不等式x2﹣16>0的解集为     
(2)分式不等式的解集为     
(3)解一元二次不等式2x2﹣3x<0.

查看答案和解析>>


同步练习册答案