2.探索活动 探索活动一 通过以下问题.探索并解决情境中所提出的问题.例如: (1)汽车在高速公路上行驶的路程与哪些量有关? (2)车内里程表上记录的数据是汽车行驶在那一段公路上的路程? (3)如果车内里程表上显示已行驶了175km.你能算出汽车在高速公路上行驶了多少时间吗? 通过探索活动.让学生在进一步明确“路程.时间.速度 关系的基础上.分析所面临的具体问题.寻求解决问题的思路与方法.体验在处理一个本源性实际问题面前.数学所具有价值和魅力.培养学生的应用意识和能力. 探索活动二 加印照片是学生所熟悉的问题.费用多少显然与加印照片的张数有关系.是正比例关系还是一次函数关系?写出函数关系式后.便不难算出用结余的费用最多可以加印几张照片.这也是根据函数值.求与之对应的自变量的值的应用问题.可以在此基础上.让学生根据此背景.再创设一些问题.例如大批加印的优惠问题.两家冲印店的选择问题等.培养学生的创新意识. 查看更多

 

题目列表(包括答案和解析)

拓广探索
七年某班师生为了解决“22012个位上的数字是
6
6
.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:
(1)认真填空,仔细观察.
因为21=2,所以21个位上的数字是2;
因为22=4,所以22个位上的数字是4;
因为23=8,所以23个位上的数字是8;
因为24=
16
16
,所以24个位上的数字是
6
6

因为25=
32
32
,所以25个位上的数字是
2
2

因为26=
64
64
,所以26个位上的数字是
4
4

(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.
②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:
尾数每4个一循环分别为:2,4,8,6
尾数每4个一循环分别为:2,4,8,6

(3)利用上述得到的规律,可知:22012个位上的数字是
6
6

(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是
3
3

查看答案和解析>>

在数学活动课上,老师要求同学们先做下面的“循环分割”操作,然后再探索规律:
如图1,是一等腰梯形纸片,其腰长与上底长相等,且底角分别60°和120°,按要求开始操作(每次分割,纸片均不得留有剩余);
精英家教网
第1次分割:将原等腰梯形纸片分割成3个等边三角形;
第2次分割:将上次分割出的一个等边三角形分割成3个全等的等腰梯形,然后将刚分割出的一个等腰梯形分割成3个等边三角形;
以后按第2次分割的方法进行下去…请解答下列问题:
(1)请你在图2中画出前两次分割后的图案;
(2)若原等腰梯形的面积为a,请你通过操作、观察,将第2次,第3次分割后所得的一个最小等边三角形的面积分别填入下表:
 
分割次数(n) 1 2 3
一个最小等边三角形的面积(S)
1
3
a
   
(3)请你猜想,分割所得的一个最小等边三角形面积S与分割次数n有何关系?(请直接用含a的式子表示,不需写推理过程)

查看答案和解析>>

在数学活动课上,老师要求同学们先做下面的“循环分割”操作,然后再探索规律:
如图1,是一等腰梯形纸片,其腰长与上底长相等,且底角分别60°和120°,按要求开始操作(每次分割,纸片均不得留有剩余);

第1次分割:将原等腰梯形纸片分割成3个等边三角形;
第2次分割:将上次分割出的一个等边三角形分割成3个全等的等腰梯形,然后将刚分割出的一个等腰梯形分割成3个等边三角形;
以后按第2次分割的方法进行下去…请解答下列问题:
(1)请你在图2中画出前两次分割后的图案;
(2)若原等腰梯形的面积为a,请你通过操作、观察,将第2次,第3次分割后所得的一个最小等边三角形的面积分别填入下表:
分割次数(n)123
一个最小等边三角形的面积(S)数学公式a
(3)请你猜想,分割所得的一个最小等边三角形面积S与分割次数n有何关系?(请直接用含a的式子表示,不需写推理过程)

查看答案和解析>>

(32分)技术革命极大地推动了生产力的发展,深深地影响了人们的生活;同时引发”一系列的社会问题,这又使有识之士努力探索解决问题的途径。阅读材料,完成下列各题。
材料一 第一次工业革命期间出现的交通工具

1825年9月27日早晨发生的情蒂是难以描述的……列车在预定的时刻开动了。“运动号”火车头由它的制造者——史蒂芬孙——驾驶带着列车走,火车头后面是六节装煤和面粉的车厢;在这六节后面的车厢里坐着铁路的经理和老板,后面又是二十节改供乘客用的煤车,都挤满了乘客,最后是六节装满煤的车厢。
铁路两旁人山人海,许多人跟着火车跑;另外一些人骑在马上沿路旁跟随着火车。在近达林敦的路上有一个大斜坡,史蒂芬孙决定在这个地方试验火车头的速度;他放出警号清除道路,加快行进,速度迭每小时15英里(24千米),……车上共有450个乘客,列车载重共90吨。
——周一良、昊于廑主编《世界通史资料选辑》
材料二  1870?年以后,科学技术的发展突飞猛进.各种新技术、新发明层出不穷,并被迅速应用于工业生产,大大促进了经济的发展。这就是第二次工业革命。当时,科学技术的突出发展主要袁现在四个方面,即电力的广泛应用、内燃机和新交通工具的创制,新通讯手段的发明、化学工业的创立。
材料三 通过机器进行的资本自行增殖,同生存条件被机器破坏的工人人数成正比。……在这些纺织工人中,许多人饿死了。许多人长期地每天靠二又二分之一便士维持一家人的生活。与此相反,英国棉纺织机在东印度的影响却是急性的。1834年到1835年东印度总督确认:“这样的灾难在商业史上几乎是绝无仅有的。织布工人的尸骨把印度平原漂白了。”
——马克思《资本论》第一卷
材料四 欧美各国,善果被富人享尽.贫民反食恶果,总由少数人把持文明幸福,故成此不平等的世界。我们这回革命,不但要做国民的国家,而且要做社会的国家,这决不是欧美所能及的。欧美为什么不能解决社会问题?因为没有解决土地问题。……解决的法子,社会学者所见不一,兄弟所信的,是定地价的法子……这于国计民生,皆有大益。……
——摘自孙中山《三民主义与中国前途》
(1)根据材料一,说明早期交通工具的特点(4分)及交通工具变革的影响。(6分)
(2)人们普遍认为,第二次工业革命为经济的发展提供了更为广泛的途径。结合材料二分析上述观点。(6分)
(3)从材料三、四中可以看出马克思和孙中山对工业革命条件下资本主义国家人民生活状况有何共识?(2分)他们解决问题的主张有何不同?(6分)
(4)为了改变贫富严重不平等的状况,孙中山先后进行了怎样的探索?(4分)请简要评价孙中山的探索活动。(4分)

查看答案和解析>>

拓广探索
七年某班师生为了解决“22012个位上的数字是______.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:
(1)认真填空,仔细观察.
因为21=2,所以21个位上的数字是2;
因为22=4,所以22个位上的数字是4;
因为23=8,所以23个位上的数字是8;
因为24=______,所以24个位上的数字是______;
因为25=______,所以25个位上的数字是______;
因为26=______,所以26个位上的数字是______;
(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.
②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:______.
(3)利用上述得到的规律,可知:22012个位上的数字是______.
(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是______.

查看答案和解析>>


同步练习册答案