16.长与宽的比等于黄金分割比的矩形称为黄金分割矩形,它在日常生活中有着广泛的应用.我们来研究一下这个矩形. 如图,矩形ABCD是个黄金分割矩形,设AB=,则: (1) ,则AD= (2)在AB上截取AM=AD,在DC上截取线段DN=DA,则BM= . 连接MN,则四边形MNAD是 形. (3)计算BM:BC的值,你发现了什么?用语言描述你发现的结论. 查看更多

 

题目列表(包括答案和解析)

如图所示.如果一个矩形的宽与长的比等于(或近似等于0.618),那么把这个矩形常说成是黄金矩形.如图商标图案就是一个长为10cm的黄金矩形,且E、F分别是长与宽的黄金分割点(CE>BE,CF>DF).请判断△AEF的形状并求出它的面积.

查看答案和解析>>

根据题意,列出方程(不必求解):

(1)学校中心大草坪上准备建两个相等的圆形花坛,要使花坛的面积是余下草坪面积的一半.已知草坪是长和宽分别为80米和60米的矩形,求花坛的半径.

(2)根据科学分析,舞台上的节目主持人应站在舞台前沿的黄金分割点(即该点将舞台前沿这一线段分为两条线段,使较短线段与较长线段之比等于较长线段与全线段之比),视觉和音响效果最好.已知学校礼堂舞台前沿宽20米,问举行文娱会演时主持人应站在何处?

查看答案和解析>>

有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.
精英家教网

查看答案和解析>>

有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.

查看答案和解析>>

有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.

查看答案和解析>>


同步练习册答案