16.解:过点A作AD⊥BC于点D. 在Rt△ABD中.∠B =45°. ∴AD = BD=AB sinB=. 在RtACD中.∠ACD = 60°. ∴tan60°=.即.解得CD =. ∴BC = BD + DC =+. 查看更多

 

题目列表(包括答案和解析)

阅读与证明:在一个三角形中,如果有两个角相等,那么这两个角所对的边也相等.如图①,在△ABC中,如果∠B=∠C,那么AB=AC,这一结论可以说明如下:
解:过点A作AD⊥BC于D,则∠ADB=∠ADC=90°,在△ABD和△ACD中
∠B=∠C,∠ADB=∠ADC,AD=AD
∴△ABD≌△ACD
∴AB=AC
请你仿照上述方法在图②中再选一种方法说明以上结论.
操作:如图③,点O为线段MN的中点,直线PQ与MN相交于点O,过点M、N作一组平行线分别与PQ交于点M′、N′,则线段MM′一定等腰NN′.想一想,为什么?
根据上述阅读与证明的结论以及操作得到的经验完成下列探究活动.探究:如图④,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的等量关系,并说明你的结论.

查看答案和解析>>

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
b
sinB
=
c
sinC

这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,精英家教网过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=
AD
AB
,则AD=csinB
Rt△ACD中,sinC=
AD
AC
,则AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种(  )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度数.

查看答案和解析>>

29、如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.
解:过点A作AH⊥BC,垂足为H.
∵在△ADE中,AD=AE(已知)
AH⊥BC(所作)
∴DH=EH(等腰三角形底边上的高也是底边上的中线)
又∵BD=CE(已知)
∴BD+DH=CE+EH(等式的性质)
即:BH=
CH

又∵
AH⊥BC
(所作)
∴AH为线段
BC
的垂直平分线
∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)
∠B=∠C
(等边对等角)

查看答案和解析>>

已知:如图,在△ABC中,∠B=∠C.求证:AB=AC。小红和小聪在解答此题时,他们对各自所作的辅助线叙述如下:

小红:“过点A作AD⊥BC于点D”;

小聪:“作BC的垂直平分线AD,垂足为D”。

(1)请你判断小红和小聪的辅助线作法是否正确;

(2)根据正确的辅助线作法,写出证明过程.

解:(1)判断:                                          

 

查看答案和解析>>

已知:如图,在△ABC中,∠B=∠C.求证:AB=AC。小红和小聪在解答此题时,他们对各自所作的辅助线叙述如下:

小红:“过点A作AD⊥BC于点D”;
小聪:“作BC的垂直平分线AD,垂足为D”。
(1)请你判断小红和小聪的辅助线作法是否正确;
(2)根据正确的辅助线作法,写出证明过程.
解:(1)判断:                                          

查看答案和解析>>


同步练习册答案