通过探索两个三角形相似的识别方法.加强合情推理能力的培养.感受发现的乐趣.逐步掌握说理的基本方法. 查看更多

 

题目列表(包括答案和解析)

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程:
(1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图②所示的直角坐标系,请你求出抛物线的解析式.
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?
(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述拋物线模型,提出了以下两个问题,请予解答:
I.如图③,在抛物线内作矩形ABCD,使顶点C、D落在拋物线上,顶点A、B落在x轴 上.设矩形ABCD的周长为l求l的最大值.
II•如图④,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P 为直线0M上一动点,过P点作x轴的垂线交抛物线于点Q.问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

(2009•邯郸二模)两个等腰直角三角形ABC,ADE,如图①摆放(E点在AB上),连BD,取BD的中点P,连PC、PE,则有PC=PE,PC⊥PE.
(1)将△ADE绕点A逆时针方向旋转,使E点落在AC上,如图②,结论是否仍成立?请证明你的判断.如果你经过反复探索,没有找到解决问题的办法,可通过连接AP,延长PE或延长DE,延长AD,延长BC的途径来完成你的证明.
(2)如图③,当△ADE绕点A逆时针方向旋转30°时,连DC,若DC∥AB,求
ACAD
的值.

查看答案和解析>>

拼图填空:
材料:硬纸板、剪刀、三角板.
方法:剪裁、拼图、探索.
操作:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,如图1所示.
(1)拼图一:分别用4张直角三角形纸片,拼成如图2、图3的形状,观察图2、图3可发现,图2中的两个小正方形的面积之和
 
图3中的小正方形的面积(填“大于”、“小于”“等于”),这个结论用关系式可表示为
 

(2)拼图二:用4张直角三角形纸片拼成如图4的形状,观察图形可以发现,图中共有
 
个正方形,它们的面积之间的关系是
 
(用语言文字叙述),这个结论用关系式可表示为
 

(3)拼图三:用8张直角三角形纸片拼成如图5的形状,通过观察可以得出,图中3个正方形的面积之间的关系是
 
(用语言文字叙述),这个结论用关系式可表示为
 

精英家教网

查看答案和解析>>

以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连结BE、CF
(1)试探索BE和CF的长度有什么关系?并说明理由
(2)你能找到哪两个图形可以通过旋转而互相得到,并指出旋转中心和旋转角的度数
(3)若△ABC是直角三角形或钝角三角形时,(1)的结论还成立吗?请直接写出结论.

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程:
(1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图②所示的直角坐标系,请你求出抛物线的解析式.
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?
(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述拋物线模型,提出了以下两个问题,请予解答:
I.如图③,在抛物线内作矩形ABCD,使顶点C、D落在拋物线上,顶点A、B落在x轴 上.设矩形ABCD的周长为l求l的最大值.
II•如图④,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P 为直线0M上一动点,过P点作x轴的垂线交抛物线于点Q.问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案