1.应用性问题 如图.园林部门准备在三条公路围成的地块内建造一个圆形的花坛.要求花坛面积尽量大.那么花坛应如何设计:(现测出AB=34米.BC=20米.CA=42米) 查看更多

 

题目列表(包括答案和解析)

我们知道两个一次函数y=k1x+b1,y=k2x+b2,当k1=k2时,这两个一次函数的图象相互平行,那么两个一次函数的图象什么情况下相互垂直呢?下面我们就来探索.
(1)画一画 
在同一平面直角坐标系下画出一次函数y=2x+1,y=-2x+3,y=
1
2
x-1,y=-
1
2
x+2的图象;
(2)想一想 
仔细观察图象,结合四个一次函数的解析式提出猜想:当
k1•k2=-1
k1•k2=-1
时,两个一次函数y=k1x+b1,y=k2x+b2的图象相互垂直;
(3)用一用 
利用(2)中的结论解决下面问题如图:已知正比例函数y=
1
2
x的图象和⊙P相切于点A,点P在x轴上,OP=3厘米,求⊙P的面积.

查看答案和解析>>

探究型问题
如图所示,在同一平面内,两条直线相交时最多有1个交点,三条直线相交时最多有3个交点,四条直线相交时最多有6个交点.

(1)当五条直线相交时交点最多会有多少个?
(2)猜想n条直线相交时最多有几个交点?(用含n的代数式表示)
(3)算一算,同一平面内10条直线最多有多少个?
(4)平面上有10条直线,无任何3条交于一点(3条以上交于一点也无),也无重合,它们会出现31个交点吗?如果能给出一个画法;如果不能请说明理由.

查看答案和解析>>

(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退.
2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图1)


解决问题
如图2,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB=
140
6
3
海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.

查看答案和解析>>

如图①是一个小朋友玩“滚铁环”的游戏,将这个游戏抽象为数学问题如图②,已知铁环的半径为25cm,设铁环中心为O,铁环与地面接触点为F,铁环钩与铁环的接触点为A,铁环钩与手的接触点是B,铁环钩AB长75cm,BG表示点B距离地面的高度.
精英家教网
(1)当铁环钩AB与铁环相切时(如图③),切点A离地面的高度AM为5cm,求水平距离FG的长;
(2)当点A与点O同一水平高度时(如图④),铁环容易向前滚动,现将如图③铁环钩的一端从A点提升到与O点同一水平高度的C点,铁环钩的另一端点从点B上升到点D,且水平距离FG保持不变,求BD的长(精确到1cm).

查看答案和解析>>

阅读下列材料,解答下列问题
如图(1),射线AD、BE、CF构成∠1、∠2、∠3,若∠BAC+∠ABC+∠ACB=180°,则∠1+∠2+∠3=
360°
360°

因为∠2=180°-∠ACB,∠ACB=180°-∠BAC-∠ABC
所以∠2=180°-(180°-∠BAC-∠ABC)
=∠BAC+∠ABC
因为∠2=∠ACE,即:∠ACE=∠BAC+∠ABC

如图(2),在△ABC中,∠A=a,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A6BC与∠A6CD的平分线相交于点A7,得∠A7=
a
27
a
27
;∠An-1BC与∠An-1CD的平分线相交于点An,得∠An,求∠An(写出推理过程).

查看答案和解析>>


同步练习册答案