2.如图.若AD⊥CD.则∠ADC= 度.垂足为 .点C到直线AD的距离为 . 查看更多

 

题目列表(包括答案和解析)

在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB,垂足为点D,则cosA=,即AD=bcosA,所以BD=c-AD=c-bcosA.
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2,b2-b2cos2A=a2-(c-bcosA)2
整理得a2=b2+c2-2bccosA.           ①
同理可得b2=a2+c2-2accosB.         ②
C2=a2+b2-2abcosC.                 ③
这个结论就是著名的余弦定理.在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
(1)在锐角△ABC中,已知∠A=60°,b=5,c=7,试利用①,②,③求出a,∠B,∠C,的数值;
(2)已知在锐角△ABC中,三边a,b,c分别是7,8,9,求出∠A,∠B,∠C的度数.(保留整数)

查看答案和解析>>

在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度得到新位置图形的一种变换.

 活动一:如图l,在Rt△ABC中,D为斜边AB上的一点,AD =2,BD =1,且四边形DECF是正方形,在求阴影部分面积时,小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),小明一眼就看出答案,请你写出阴影部分的面积:________.

活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC =5,CD =3,过点A作AE⊥BC,垂足为点E,小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADC(如图4所示),则:

(1)四边形AECG是怎样的特殊四边形?答:___________;

(2)AE的长是______________.

活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC绕点B逆时针旋转90°得到线段BE,连结AE.若AB =2,DC =4,求△ABE的面积.

 

查看答案和解析>>

在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度得到新位置图形的一种变换.
活动一:如图l,在Rt△ABC中,D为斜边AB上的一点,AD =2,BD =1,且四边形DECF是正方形,在求阴影部分面积时,小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),小明一眼就看出答案,请你写出阴影部分的面积:________.
活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC =5,CD =3,过点A作AE⊥BC,垂足为点E,小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADC(如图4所示),则:
(1)四边形AECG是怎样的特殊四边形?答:___________;
(2)AE的长是______________.
活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC绕点B逆时针 旋转90°得到线段BE,连结AE.若AB =2,DC =4,求△ABE的面积.

查看答案和解析>>

在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度得到新位置图形的一种变换.
活动一:如图l,在Rt△ABC中,D为斜边AB上的一点,AD =2,BD =1,且四边形DECF是正方形,在求阴影部分面积时,小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),小明一眼就看出答案,请你写出阴影部分的面积:________.
活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC =5,CD =3,过点A作AE⊥BC,垂足为点E,小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADC(如图4所示),则:
(1)四边形AECG是怎样的特殊四边形?答:___________;
(2)AE的长是______________.
活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC绕点B逆时针 旋转90°得到线段BE,连结AE.若AB =2,DC =4,求△ABE的面积.

查看答案和解析>>

在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度得到新位置图形的一种变换.

 活动一:如图l,在Rt△ABC中,D为斜边AB上的一点,AD =2,BD =1,且四边形DECF是正方形,在求阴影部分面积时,小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),小明一眼就看出答案,请你写出阴影部分的面积:________.

活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC =5,CD =3,过点A作AE⊥BC,垂足为点E,小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADC(如图4所示),则:

(1)四边形AECG是怎样的特殊四边形?答:___________;

(2)AE的长是______________.

活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC绕点B逆时针 旋转90°得到线段BE,连结AE.若AB =2,DC =4,求△ABE的面积.

 

查看答案和解析>>


同步练习册答案