如图11.正方形ABCD和正方形BEFC. 操作:M是线段AB上一动点.从A点至B点移动.DM⊥MN.交对角线BF于点N. 探究:线段DM和MN之间的关系.并加以证明. 说明:如果你经历反复探索.没有找到解决问题的方法.请你把探索过程中的某种思路过程写出来在你经历说明(1)的过程之后.可以从下列①.②中选取一个补充或更换已知条件.完成你的证明.注意:选取①完成证明得9分,选取②完成证明得6分.①M是线段AB的中点,②M.N分别是线段AB.BF的中点. 附加题 如图12.当M是线段AE延长线上一动点.DM⊥MN.交对角线BF延长线于点N.探究线段DM和MN之间的关系.并加以证明. A 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,延长正方形ABCD的边AB到E,使BE=AC,则∠E是(  )
A、45°B、22.5°C、11.5°D、40°

查看答案和解析>>

(11·永州)(本题满分10分)探究问题:

⑴方法感悟:

如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.

感悟解题方法,并完成下列填空:

将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:

AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,点G,B,F在同一条直线上.

∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,   ∴∠1+∠3=45°.

即∠GAF=∠_________.

又AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

⑵方法迁移:

如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.

⑶问题拓展:

如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

 

查看答案和解析>>

(11·永州)(本题满分10分)探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.

⑵方法迁移:
如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.

⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

查看答案和解析>>

(11·珠海)(本题满分6分)如图,在正方形ABC1D1中,AB=1.连接AC1
AC1为边作第二个正方形AC1C2D2;连接AC2,以AC2为边作第三个正方形AC2C3D3
(1)求第二个正方形AC1C2D2和第三个正方形的边长AC2C3D3
(2)请直接写出按此规律所作的第7个正方形的边长.

查看答案和解析>>

(11·永州)(本题满分10分)探究问题:

⑴方法感悟:

如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.

感悟解题方法,并完成下列填空:

将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:

AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,点G,B,F在同一条直线上.

∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,   ∴∠1+∠3=45°.

即∠GAF=∠_________.

又AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

⑵方法迁移:

如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.

⑶问题拓展:

如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

 

查看答案和解析>>


同步练习册答案