解:(1)在Rt△A BC中.∠BAC=90°.∠C=30° ∵tanC= ---2分 ∴AB=AC·tanC ---3分 =9× ---4分 ≈5.2(米) ---5分 (2)以点A为圆心.以AB为半径作圆弧.当太阳光线与圆弧相切时树影最长.点D为切点.DE⊥AD交AC于E点. ---7分 在Rt△ADE中.∠ADE=90°.∠E=30°. ∴AE=2AD ---9分 =2×5.2=10.4(米) ---10分 答:树高AB约为5.2米.树影有最长值.最长值约为10.4米.--11分 查看更多

 

题目列表(包括答案和解析)

(11·贵港)(本题满分11分,第(1)题5分,第(2)题6分)

(1)(11·贵港)(本题满分5分)计算:(-1)2011-2sin60º+|-1|;

 

 

 

查看答案和解析>>

(本题满分11分)
在一个暗箱中,放有大小和质量都相同的红、黄、绿、黑四种颜色的球若干个.现从中任意摸出一个球,球摸出后仍放回箱内.若得到红球的概率为,得到黄球的概率为,得到绿球的概率为.已知暗箱中黑球有15个,问袋中原有红球、黄球、绿球各多少个?

查看答案和解析>>

(本题满分11分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)

1.(1)直接写出c的值;

    2.(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?

    3.(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右测上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求点G的坐标.

 

查看答案和解析>>

(11·贵港)(本题满分11分)

如图所示,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于点B,大圆的弦BC⊥AB于点B,过点C作大圆的切线CD交AB的延长线于点D,连接OC交小圆于点E,连接BE、BO.

(1)求证:△AOB∽△BDC;

(2)设大圆的半径为x,CD的长为y:

① 求y与x之间的函数关系式;

② 当BE与小圆相切时,求x的值.

 

查看答案和解析>>

(本题满分11分)
如图所示,⊙的直径是它的两条切线,为射线上的动点(不与重合),切⊙,交,设

(1)求的函数关系式;
(2)若⊙与⊙外切,且⊙分别与
相切于点,求为何值时⊙半径为1.

查看答案和解析>>


同步练习册答案