对称的点的坐标特征: ① 点P(a,b)关于x轴的对称点的坐标P.即:点P.P关于x轴对称横坐标相同.纵坐标互为相反数. ② 点P(a,b)关于y轴的对称点的坐标P.即:点P.P关于x轴对称纵坐标相同.横坐标互为相反数. ③ 点P(a,b)关于原点对称的点的坐标P.即:点P.P关于原点对称横.纵坐标均互为相反数. 查看更多

 

题目列表(包括答案和解析)

△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
注:考察学生通过对几何图形做不同变换,作出几何对象的大小,位置,特征的变化情况,理解图形的对称,掌握数形结合思想.

查看答案和解析>>

△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
注:考察学生通过对几何图形做不同变换,作出几何对象的大小,位置,特征的变化情况,理解图形的对称,掌握数形结合思想.

查看答案和解析>>

△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
注:考察学生通过对几何图形做不同变换,作出几何对象的大小,位置,特征的变化情况,理解图形的对称,掌握数形结合思想.

查看答案和解析>>

阅读:我们规定[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x轴、y轴的交点,其中m>0,且△OAB的面积为4,O为坐标原点,求图象过A、B两点的一次函数的特征数.
(3)设点P(m1,n1),Q(m2,n2)是抛物线y=(x+m)(x-2)上两个不同的点,且关于此抛物线的对称轴对称,请直接写出m1+m2的值.

查看答案和解析>>

阅读:我们规定[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x轴、y轴的交点,其中m>0,且△OAB的面积为4,O为坐标原点,求图象过A、B两点的一次函数的特征数.
(3)设点P(m1,n1),Q(m2,n2)是抛物线y=(x+m)(x-2)上两个不同的点,且关于此抛物线的对称轴对称,请直接写出m1+m2的值.

查看答案和解析>>


同步练习册答案